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Abstract

Recently, a neuroscience inspired set of visual features was introduced. It
was shown that this representation facilitates better performance than state-
of-the-art vision systems for object recognition in cluttered and unsegmented
images.

In this paper, we investigate whether these features can be applied outside
the scope of unsegmented object detection. We show that this outstanding
performance extends to shape-based object detection in the usual windowing
framework, to amorphous object detection as a texture classification task, and
finally to context understanding

These tasks are performed on a large set of images which were collected
as a benchmark for the problem of scene understanding. The final system is
able to reliably identify cars, pedestrians, bikes, sky, road, buildings and trees
in a diverse set of images.

1. Introduction

The Standard Model Features (SMF), recently introduced in [23], are based on combining
the output of Gabor filters over scale and position. This combination is done using a
max operation?, resulting in a set of features which are position- and scale-tolerant edge-
pattern detectors. The SMF were introduced as an implementation of the feed-forward
model in neuroscience, and are successors to previous quantifications of it [19].

The goal of this paper is to reclaim these SMF features from neuroscience by putting
them within the context of other common computer vision tasks, and to present a simple
and complete system for object detection of a wide variety of object types.

Object recognition using an unsegmented training set is becoming a popular research
field, with several benchmark data sets and many published contributions. The first meth-
ods [29, 10, 9] used generative models that recognize highly informative object compo-
nents and their spatial relations, but there have been discriminative approaches [6, 23] and
registration based approaches [1] applied to this problem as well.

Lsimilar to the morphological dilation operation, but the maximum is taken over scale as well as position



The ability to learn from unsegmented images is impressive, but the performance is
still behind that of those systems which do not train in clutter. To detect objects in natural
images requires high recall at very low false positive rates. Today there exist several
systems which perform well on this difficult benchmark for faces [24, 22, 27], cars [22]
and pedestrians [17, 28]. Typically, these systems require large sets of training data.

There is an open question whether the systems that were designed to work on unseg-
mented images can become successful object detection systems when trained on images
with no clutter. If so, then a large gain can be made if they could transform their ability
to learn from few training examples, as well as their suitability to a large number of ob-
jects, into this new domain. In this paper, we will show that SMF features can be used
successfully for object detection in the segmented object framework.

Another recognition task to which we extend the SMF set is the detection of non-
shape-based objects, i.e., trees and buildings. This is essentially a texture recognition task:
after segmenting the images, we recognize the texture of each segment. \We demonstrate
that the SMF features outperform other state-of-the-art algorithms. Finally, we offer a
platform for context computation inside the same unified framework.

The three capabilities, shape-based object detection, texture-based object detection
and context computation, form a complete system that serves as a robust base for scene
understanding architectures.

2. The SMF features

The Standard Model feature set is composed of two sets of features: an intermediate set
of features (C1), and the position invariant set of features (C2). It is believed that the
biological counterparts of both sets play a role in object recognition in the brain.

The set of intermediate features: This set corresponds to the first cortical stages of
V1. Itis implemented as the output of a hierarchical process containing two layers termed
S1 and C1. The first layer (S1) is obtained by applying a battery of Gabor filters to the
image. The parameters of the filters were adjusted so that the S1 units’ tuning profiles
match those of V1 parafoveal simple cells. This was done by first sampling the space of
the parameters and then generating a large number of filters. These filters were applied
to stimuli which are commonly used to assess V1 neurons’ tuning properties [14] (i.e.,
gratings, bars and edges). After removing filters that were incompatible with biological
cells [14], we were left with a final set of 16 filters at 4 orientations (see table 1). The S1
layer therefore contains 16 x 4 filter output images.

The next layer, C1, corresponds to complex cells which show some tolerance to shift
and size. This tolerance is obtained by taking a maximum across neighboring scales and
nearby pixels. For this purpose, the 16 filters were divided into into 8 bands. The output
of each band X is determined by max-filtering each filter-response over a region of size
NZ x NZ, and taking the maximum again over the scales within the band. This process
is done separately for every orientation. The output of the C1 layer therefore contains 4
orientations times 8 bands for a total of 32 different images of combined filter outputs.

The position- and scale-invariant set of features: This computation can also be
conceptualized as two layers, the S2 layer and the C2 layer. The S2 layer employs a patch
based approach, wherein each band of the C1 output is filtered with a set of prototypes.
These prototype patches are themselves crops of images represented in C1 space. This
process can be described as a template matching process where each prototype is com-
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filter scale s 7&9 11&13 15& 17 19&21 23&25 27&29 31&33 35&37
Gabor width o 28&36 45&54 63&7.3 82&92 10.2&11.3 123& 134 146 & 15.8 17.0&18.2
Gabor wavelength A 35&4.6 56&6.8 79&9.1 103& 115 127&141 154 & 16.8 182&19.7 212&228
position pooling size N 8 10 12 14 16 18 20 22
orientation 6 o; . I %’rr

patch size n; 4% 4;8x8;12 x 12;16 x 16 (x4 orientations)

Table 1: Summary of parameters used in our implementation.

pared to every window of matching size in each band. Note that each n;j x n; x 4 prototype
is originally extracted from one band, but it is compared across bands for scale invariance.

The final set of shift and scale invariant SMFs (C2) contains the global max over all
bands and positions of elements in the S2 layer. This is done separately for each prototype,
hence the set of C2 features has as many elements as the number of prototypes.

3. C2featuresfrom a computer vision perspective

The first layer, S1, is just an application of Gabor filters [12, 7] to the input image, which
is fairly standard and has been used for many computer vision problems [3, 21, 18]. The
S2 and C2 layers are an application of a patch based approach, which uses correlation
with smaller image crops as its basic building block. Such systems are gaining a lot of
popularity, and have been used successfully for texture synthesis [8], super resolution
[11], object detection [26, 25] and object-specific image segmentation [2].

The only layer which might seem unorthodox from a computer vision perspective is
the C1 layer, in which the outputs of the S1 layer are being maximized locally. While
many systems maximize the output of a detector over the entire image, this has been done
locally only recently. For part based object detection [26, 25], detectors of each part are
learned independently and then applied to regions where the parts are expected to appear.
The SMF seem unique in that general purpose filters are being maximized over local
regions in the image.

In order to explain the utility of C1, we invoke a scale space terminology (see [15]
for an overview). Scale space theory was mostly concerned at first with the Gaussian
scale space. This scale space has many desirable properties such as separability, linearity,
shift invariance, isotropy, homogeneity, and causality. The last property is an important
one: causality means that no new level sets are generated by going into coarser scales. A
related property is to demand the non-creation of local extrema in coarser scales.

In our application, local maximization is used to move from a fine scale to a coarser
scale in order to make the C1 layer invariant to local translations of the edge. As a pseudo
scale space, local maximization has some desirable properties: it is separable (one can ap-
ply it over the rows and then over the columns), it is shift invariant, and it is homogeneous
(applying it repeatedly corresponds to moving into coarser and coarser scales). However,
in general, it is not an appropriate scale space. Among other problems, applying it to an
image may create new local extrema.

However, in the SMF framework, the local maximum operator is applied to a set of
Gabor filtered images, which are a sparse representation of the original image. The max
scale space is successful in preserving the amplitude of the sparse maxima, whereas the
Gaussian scale space smooths them out.



| Object | car | pedestrian | bicycle | building | tree | road [ sky |

Type shape-based texture-based
#of Labeled Examples | 5799 [ 1449 | 209 5067 | 4932 [ 3400 [ 2562

Table 2: Summary of some of the labeled objects in the StreetScenes Database.

Standard Model
Segmented image classification

Input image

Standard Model
classification

Windowing ;

——— Texture-based objects pathway (e.g., trees, road..)
- Shape-based objects pathway (e.g., pedestrians, cars..)

Figure 1: Anillustration of the data flow diagram of our system.

4. Scene-Understanding System Architecture

We present the current implementation of a multi-year scene-understanding project. Every
detector within this system relies upon the same SMFs, even though the detected objects
themselves are qualitatively different. The currently detected objects are listed in table 2.
The objects are divided into two distinct sets, texture-based objects and shape-based
objects, and two classes are handled using different learning strategies. Fig. 1 illustrates
the data flow diagram for this architecture, specifically the pathways for detection of the
texture-based and shape-based objects. Additionally, the arrow labeled ’context’ sym-
bolizes that detections of the texture-based objects are used to aid in the detections of
the shape-based objects. Detailed descriptions of the algorithms for texture-based object
detection, shape-based object detection, and contextual influence are offered below.

4.1. The Street Scene Dataset

Outdoor images of cities and suburbs was selected as an appropriate setting for the scene-
understanding system. A database of nearly 10,000 high-resolution images has been
collected, 3,000 of which have been hand labeled for 9 object categories. Sample im-
ages, their hand labellings, and some empirical results are illustrated in Fig 2. Note that
the accurate detection of many of these object categories is made difficult by the wide
internal variability in their appearance. For example the object class “cars” includes ex-
amples of many diverse models, at many poses, and in various amounts of occlusion and
clutter, “trees” appear very different in summer and winter, and the class of “buildings”
includes sky-scrapers as well as suburban houses. Capturing this wide variability while



Figure 2: Top Row: StreetScenes examples. Middle Row: True hand-labeling; color
overlay indicates texture-based objects and bounding rectangles indicate shape-based ob-
jects. Note that pixels may have multiple labels due to overlapping objects. Bottom Row:
Empirical performance of the current object detectors.

maintaining high accuracy is part of the challenge of the scene-understanding problem.

4.2. Shape-Based Object Detection

In our system, shape-based objects are those objects for which there exists a strong part-
to-part correspondence between examples, including things like pedestrians, cars, and
bicycles. In order to detect shape-based objects, the system presented here uses the C1
features from the SMF set in combination with the well-known windowing technique.
Windowing is used to enable the detector to recognize objects at all positions and scales,
given that C1 features have only limited position and scale invariance.

The training data for these detectors is extracted by cropping examples from a subset
of the database set aside for training. These crops are converted into C1 SMF space as
detailed in Sec. 2. Briefly, each crop is resized to a common resolution, filtered with di-
rectional Gabor wavelets at multiple scales, max-filtered, and finally decimated. In this
way, each training example is converted into a 1,024 dimensional vector, representing a
16 x 16 square array of C1 level features, each of which is itself a 4 dimensional vec-
tor representing 4 different orientations. After both positive and negative examples are
extracted, the data are used to train a boosting classifier.

In test images, every square window of the image is converted into C1 space and fed
into the object detectors, resulting in a real-valued detection strength at every possible
location and scale. The final system output is drawn by thresholding this response and
using a local neighborhood suppression technique. In Fig. 2 we presented some typical
results of this type of detection.

4.3. Texture-Based Object Detection

Texture-based objects are those objects for which, unlike shape-based objects, there is
no obvious visible inter-object part-wise correspondence. These objects are better de-
scribed by their texture than the geometric structure of reliably detectable parts. For the



StreetScenes database these currently include buildings, roads, trees, and skies.

The detection of the texture-based objects begins with the segmentation of the input-
image. For this we employ the freely-available segmentation software “Edison” [5]. Seg-
ments are assigned labels by calculating C2 SMFs within each segment, and inputting this
vector into a suitably trained boosting classifier. One classifier is trained for each object
type using examples from the training database. Note that training samples for the texture
objects are only drawn from locations nearer to the center of these objects so as to prevent
the classifier from learning anomalous texture responses due to the boundaries between
objects.

In our experiments, 444 C2 features are used to represent each texture segment, 111
each from the four possible patch sizes, n; (see table 1). The associated prototypes are
extracted from random locations in the training image database. In order to learn the
mapping from this vector of C2 responses to the correct object label, a boosting classifier
is employed. Only 150 rounds of boosting are used to learn each model, meaning that for
each object, even though 444 C2 features are available, only a maximum of 150 features
are actually used.

4.4. Context Detection

In the data flow diagram in Fig. 1, an arrow labeled “context” points from the texture-
based object detection unit to the shape-based object detection unit. This arrow indicates
that it is possible to use the detection of the texture objects as useful feature inputs to the
shape-based objects. The intuition is that, for instance, the detection of roads can and
should bias the detection of cars.

In our system, context at a point is defined as a function of the nature of the surround-
ing objects. The context feature at point x is constructed by sampling the texture-based
object detector responses at a set of locations measured relative to point x. These relative
locations are spaced such that they well sample the surrounding region while avoiding
sampling from any locations which might intersect the actual shape-based object we are
building a context model for. Please see Fig. 3 for an illustration of these relative sam-
pling locations in comparison to the average sizes of some of the shape-based objects.
A total of 24 such relative locations have been selected, meaning that the feature vector
associated with a context is 4 x 24 dimensional, where 4 is the number of texture-based
objects detectable by the system.

In order to train the context detection system, the context feature is sampled from a
number of locations of positive and negative object context. A pixel with positive context
is defined as a pixel which is within a labeled example of the target object. In the train-
ing stage, context feature samples are taken using the true-hand labeled locations of the
texture-objects. This training data is used to train a boosting classifier for the context of
each shape-based object.

In order to apply the context classifier to a test image, the context feature is first calcu-
lated at every pixel. In this case, since true texture-based object locations are unavailable,
the empirical detections are used instead. Applying the contextual classifiers to the pixel-
wise feature vectors results in one map of contextual support for each of the shape-based
object classes. These maps of contextual support are used in a rejection cascade frame-
work, wherein if the support at a particular location is below some threshold, then the
window is labeled as a negative before it is even passed to the shape-based object clas-
sifier. The appropriate context threshold for the rejection cascade is learned using cross
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Figure 3: An illustration of the 24 relative sampling locations (black x’s). The thin
black rectangle represents the average size of the cars in the database, and the thick black
rectangle represents the average size of pedestrians.

validation on the training set.

5. Experiments

Three experiments are described below, each of which is intended to test the fidelity of
different subsystems of the SMF-based scene understanding architecture. Comparisons
are made to other state of the art object detectors for these subsystems.

5.1. Experiment 1. Fidelity of the Shape-Based Object Detector

For the three shape-based objects car, pedestrian, and bicycle, we train C1 based detectors
as described in Sec. 4.2. For comparison, we also train classifiers for these objects using
three other well known object detection techniques. The ROC results of this experiment
are illustrated in Fig. 4. The thick dashed curve labeled “Grayscale” indicates the results
of training a system using a simple grayscale feature vector instead of the C1 values.
In this system, each example is normalized in size and histogram equalized to build the
feature vector.

Another base-line detector is built using patch-based features similar to those de-
scribed in [25]. Each patch-based feature f; is associated with a particular patch pj,
extracted randomly from the training set. The value of f; is the maximum of the nor-
malized cross correlation of p; within a window of the image. This window of support
is equal to a rectangle three times the size of p; and centered in the image at the same
relative location from which p; was originally extracted. The advantage of these types of
features over the gray-scale features is that the patch features can be highly object-specific
while maintaining a degree of position invariance. For the results illustrated in Fig. 4, the
system is implemented with 1,024 such patch features with patches of size 12 x 12 in
images of size 128 x 128.

For the SMF classifier, the "grayscale” classifier and the “local patch correlation”
classifier, the statistical learning machine is a boosting classifier with 150 rounds. Perfor-
mance is no better using a linear or polynomial kernel SVM.

The final baseline system compared to in Fig. 4 is a part-based system as described
in [16]. Briefly, object parts and a geometric model are learned via image patch clus-
tering, and detection is performed by re-detecting these parts and allowing them to vote
for objects-at-poses in a generalized Hough transform framework. While good results
for cars were reported in the original work, we see that for the pose-independent learning
problem, this patch-based constellation model is outperformed by the SMF system. Over-
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Figure 4: ROC curves illustrating the performance our the shape-based object detector
and three baseline systems.

all, for all the three object categories tested, the standard model feature based classifiers
were dominant.

5.2. Experiment 2: Fidelity of the Texture-Based Object Detector

In order to measure the fidelity of our object detectors, we compare performance to other
state-of-the-art texture recognition systems using ROC curves. However, quantification of
the performance of the texture-based object detectors is made complicated by the nature
of the database itself. First, due to object occlusions, some pixels in the StreetScenes
database are labeled as one object, i.e., “building”, but their actual appearance is due to
another object, i.e., “tree.” We address this by removing pixels with multiple labels, or
no label, from the test. Second, the detector output when the receptive field overlaps a
texture-boundary is unreliable. This issue is addressed by segmenting the input image and
averaging the detectors’ responses over each segment. As a result, uncertain responses at
object borders are offset by the responses completely within the object boundaries.

In Fig. 5 we compare the results of the SMF texture-based object detector against four
other texture classification systems. The “Blobworld” system is constructed using the
Blobworld features described in [4]. Briefly, the Blobworld feature is a six dimensional
vector at each pixel; 3 dimensions encode the color in the well-known Lab color space,
and 3 dimensions encode the texture using the local spectrum of gradient responses. The
curves labeled “Texton 1” and “Texton 2” are are the results of a system based on [20].
The texton feature is extracted by first processing the test image with a humber of pre-
defined filters. Texton 1 uses 36 oriented edge filters arranged in 5° increments from 0°
to 180°. Texton 2 follows [20] exactly by using 36 gabor wavelet filters at 6 orientations
and 3 scales. For both of these systems independently, a large number of random samples
of the 36 dimensional edge response images are taken and subsequently clustered using
k-means to find 100 cluster centroids. Each of these centroids is called a ’texton.” The
"texton image’ is calculated by finding the index of the nearest texton for each pixel in
the edge response images. The feature vector used for learning the texture-based object
model is built by calculating the local 10 x 10 histogram of texton values. The texton
feature is thus 100 dimensional, one dimension for each histogram bin. Finally, the “His-
togram of Edges” system is built by simply using the same type of histogram framework,
but over the 36 dimensional directional edge response of “Texton 1” rather than the texton
identity. Learning is done with 150 rounds of boosting over regression stumps.

From Fig. 5 we see that, while different methods have particular strengths for some



Figure 5: ROC curves of the performance of five texture classification algorithms on four
classification tasks; the detection of buildings, trees, skies, and roads.

[ Context Classifier | car [ pedestrian | bicycle ]
no context .9809 .9551 9275
position only .9832 .9585 .9384
using true texture-object locations | .9865 .9672 .9521
using texture-object detections .9868 .9606 .9554

Table 3: Area under ROC curve for object detection using both appearance and contextual
cues in a rejection cascade.

objects, the SMF based texture system has superior performance on every texture-based
object class. Changing the type of classifier or removing the smoothing over segments
step does not change the order of the performances.

5.3. Experiment 3: Fidelity of the Contextual M odulation

The context system described in Sec. 4.4 is designed to augment the detection power
of the shape-based object detectors by automatically removing the false positives that
are out of context. The best way to measure this type of system is to show how much
performance is gained by using the context as filter. In table 3 we document the area under
the ROC curve for the shape-based detectors both with and without contextual assistance.
In addition, we present two alternative contextual systems. One baseline system treats
context as a learned position prior. This works because some locations are more likely to
contain the shape-based objects than others. The other comparison system is given access
to the true locations of all the texture-based objects in the image, rather than the detection
scores. In two cases the system relying upon the estimated texture-based object locations
outperforms even the system with access to the true locations of the texture-based objects.
The difference may be due to the greater consistency in the labeling from the empirical
detections.

6. Summary and Conclusions

The standard model feature set, a feature set designed to closely model the early visual
computation in the brain-area V1, has been successfully employed previously for the task
of unsegmented object recognition. In this work we have shown that these features also
excel in three other areas important to computer vision, specifically, segmented object-
detection, texture-recognition, and context understanding. By tying these three tasks to-
gether within the common SMF framework we have built a system capable of rudimentary
image understanding in a challenging domain.
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