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Abstract

This thesis describes an effort to construct a scene understanding system that is able to
analyze the content of real images. While constructing the system we had to provide
solutions to many of the fundamental questions that every student of object recognition
deals with daily. These include the choice of data set, the choice of success measurement, the
representation of the image content, the selection of inference engine, and the representation
of the relations between objects.

The main test-bed for our system is the CBCL StreetScenes data base. It is a carefully
labeled set of images, much larger than any similar data set available at the time it was
collected. Each image in this data set was labeled for 9 common classes such as cars, pedes-
trians, roads and trees. Our system represents each image using a set of features that are
based on a model of the human visual system constructed in our lab. We demonstrate that
this biologically motivated image representation, along with its extensions, constitutes an
effective representation for object detection, facilitating unprecedented levels of detection
accuracy. Similarly to biological vision systems, our system uses hierarchical representa-
tions. We therefore explore the possible ways of combining information across the hierarchy
into the final perception.

Our system is trained using standard machine learning machinery, which was first ap-
plied to computer vision in earlier work of Prof. Poggio and others. We demonstrate how
the same standard methods can be used to model relations between objects in images as
well, capturing context information. The resulting system detects and localizes, using a
unified set of tools and image representations, compact objects such as cars, amorphous
objects such as trees and roads, and the relations between objects within the scene. The
same representation also excels in identifying objects in clutter without scanning the image.

Much of the work presented in the thesis was devoted to a rigorous comparison of
our system to alternative object recognition systems. The results of these experiments
support the effectiveness of simple feed-forward systems for the basic tasks involved in
scene understanding. We make our results fully available to the public by publishing our
code and data sets in hope that others may improve and extend our results.

Thesis Supervisor: Tomaso A. Poggio
Title: McDermott Professor
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4-1 Column 1: Test images from the StreetScenes database. Column 2: True

hand-labeled semantic data for the building, tree, road, and sky class. Col-

umn 3: Automatically classified semantic data. (Locations with larger posi-

tive distance from hyperplane shown brighter). Column 4: Learned context
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Chapter 1

Introduction

Scene understanding, loosely, is the process of extracting meaning from visual input.

When we say that a human understands a scene, we mean that the human could, with

proper prior experience, answer questions about the scene regarding the presence and

locations of objects, the identities or expressions of particular people in the scene,

and, in video, the detection actions or events. We might even expect said human

to be able to make conjectures about more complicated and abstract structure from

the scene, producing inferences about social relationships or impending events in the

world of the scene. The complicated and varied capabilities of the human scene

understanding apparatus are certainly well beyond the most advanced computational

methods of today.

In this thesis we will describe in detail the structure, implementation and proper-

ties of a system designed to take as input still images of street scenes, and output the

detection of a diverse set of object categories, including objects like cars, buildings,

people, and trees. This narrow, yet challenging scope was selected so as to provide

focus to our efforts toward scene understanding as a whole. We will describe said

system, compare the performance of its individual parts to the appropriate states

of the art, and then, in later chapters, describe improvements and extensions to the

system with a mind toward making the system more accurate in performance and

more elegant in structure.

It should be noted that the resulting system, with proper training data, may be
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applied to domains other than street scenes. There is no fundamental reason why it

should not function if trained to recognize objects in other scenarios, such as office

scenes or images of sea ports.

1.1 Goals and Motivations

There is no need to describe the motivation behind studying scene understanding as

a whole. It is widely believed that the implications of the advent of robust automatic

scene understanding would be dramatic in a wide variety of applications, including

surveillance, robotics, health, and transportation, among others. Giving machines

access to an abstract executive representation of their environment will enable a host

of future technologies.

While meager compared to the abilities expressed by the human scene understand-

ing apparatus, the focus selected for this thesis describes a fundamental, yet unsolved

problem in scene understanding, i.e., how to reliably detect a wide variety of different

object classes in a natural scenes. The goal of this work is then to build a test which

closely measures performance on this sort of natural-scene object-detection problem,

demonstrate aptitude at this test, describe our methods, and finally to share the test

with the academic community so as to promote the healthy comparison of systems.

In order to manage the scope of this endeavor, we have decided to limit the

domain to still images taken from the street and the detection of nine associated

object categories. Still images, rather than video, was selected as the focus for this

project for computational and database concerns. It may even be that the still image

understanding problem is the more difficult in that there are no motion cues to assist

in segmentation or recognition. The chosen domain, and the associated objects, were

selected because they exhibit many of the properties which make object detection a

difficult task, i.e., strong within-class variation due to changes in form, lighting, pose,

etc., and wide variability in the types of cues necessary to detect the specific object

type. Also, intuitively, street-scenes, like many categories of visual stimuli, exhibit

a type of regularity of structure which we might envision leveraging, e.g., that cars
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tend to drive upon roads. Finally, the understanding of street scenes is notable for

the direct ties to important applications in safety and surveillance.

It is true that object detection in still images has been a focus of computer vision

research for many years, and a short overview is given in section 1.2. The tech-

nology has come very far since its inception, as demonstrated by the year-by-year

performance improvement on publicly available databases, such as those described

in [69, 80, 103, 76, 62] and many notable others. In this light, it is fair to ask what

is missing from these previous studies which is addressed in this thesis.1 Again, our

goal is the accurate detection of a wide variety of objects in a natural environment.

Systems measured using the aforementioned databases and associated measures are

in a way divorced from this goal, either by specialization to one particular object

type, or by testing without clutter, where the approximate scale and position of the

target object are already known. Furthermore, experiments are often performed on

clean image crops with statistics well removed from the distribution found in natural

images. It is often difficult to generalize from these studies how well the systems

described therein would perform on a real world detection task. This is not to say

that previous work in object detection has been ill conceived or poorly tested. Our

position is simply that the field has matured to the point where it makes sense to

build and compare systems in more difficult scenarios which better mimic the real

world problem we are trying to address. In this work we will address these issues by

providing a common natural-scene database and appropriate performance measures

for object detection systems, describing a system which detects these objects, and

comparing its performance to the state of the art systems in the field.

Again, there is certainly more to scene understanding than can be described in

terms of object detection. It has been shown, for instance in Torralba et al.[117], that

some certain scene-understanding type questions, such as depth-of-scene or general-

ized location, may be answered without any object-detection at all. However, many

questions about the nature of the constituent objects and their relationship to the

viewer may not be addressed without first detecting them within the scene. It is likely

1A more detailed account of the academic contributions of this thesis is given in section 1.4.
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that any future technology that solves scene-understanding will have object detection

as a component.

1.2 Overview of Previous Work

In this section we will discuss prior work in the areas of object detection, texture

recognition, and context awareness. These technologies are all particularly relevant

to our scene understanding task. In this short survey of related works we will focus on

the data structures and learning techniques used. Subsequently, we will discuss the

types of databases and performance measures commonly used today by the computer

vision community.

1.2.1 Object Detection

In his thesis, Schneiderman [98] imagines an “ideal but infeasible” classifier for object

detection. This classifier consists of a table in which every row corresponds to one

image, discretized into say 16 bit grayscale 20 × 20 pixel images. Associated with

each row is whether this image is an object or a non-object. As this table would

have to have more than 10900 rows in order to represent every possible image, it

certainly is infeasible. Even more perplexing, however, is that, as illustrated in [117],

the same image, in different contexts, may be perceived in completely different ways,

suggesting that even the table would not suffice to solve the object detection problem.

In this section, the difficulties inherent to the object detection problem are discussed,

followed by a short survey of current state of the art approaches.

A robust detector needs to compensate not only for changes in the position, scale,

and pose of the object, but also for variability in lighting, possible occlusions, and

especially for the changes in the particular example of an object class. It would be

of little use to have to train a new classifier for every example of the object class.

Figure 1-1 illustrates some selected examples of objects in natural scenes undergoing

these sorts of transformations. Perhaps the most difficult types of objects to detect

are those for which their nature is defined by their suitability to a certain function,
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as opposed to their appearance or structure. Objects such as chairs, and perhaps

vehicles, fall into this category.

When we speak of the object detection problem, there is an ambiguity that needs

to be resolved. Often times, the term object-detection also includes the concept of

object-localization, where the object’s position and size are part of the answer. In

contrast, object-detection may also refer to the binary problem of whether an image

does, or does not contain an example of the target object, independent of where it

is or how big it is within the image. In this thesis we will often refer to the later

problem as “object-detection in clutter”, and to the former problem as simply object

detection. When the training set contains enough variability in the position and scale

of the positive object class, we refer to it as object recognition using an unsegmented

training set. Modern object detection systems have exhibited some proficiency in

learning with these types of databases, but still underperform those systems with

access to training databases with greater correspondence between examples. See, for

example, [127, 37, 68, 101, 27, 6].

While early computer vision systems used model-based approaches [60, 44], nearly

all modern computer object detection systems rely upon statistical learning methods.

This requires that the images themselves must be represented mathematically, usu-

ally as some vector in <n. As an example, the most naive way to represent an image

is to simply resize the image to a standard size, convert it to grayscale, and record

an ordered list of all the pixel values. It has been established, however, that detector

performance depends critically on the choice of representation [51]. A wide variety

of image representations have been used in the past, including grayscale pixel values,

wavelet coefficients, linear projections (i.e., PCA, LDA and variants), and many oth-

ers. Each has particular strengths and weaknesses for certain object types and modes

of invariance. Recently, with the emphasis on performance, there has been a rapid

convergence of representational choices into a few groups, described in more detail

below.

Patch-Based Features. A patch-based feature vector is an image descriptor

which depends on comparing the image with a set of stored image crops (also known
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Figure 1-1: Large variations in appearance can occur within each object class.
Changes in lighting and pose, varying amounts of occlusion, and individual object
variability contribute to the difficulty of the object detection task. From top to bot-
tom, this figure illustrates examples of the bicycle, tree, car, building, and pedestrian
classes.
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as templates or fragments). Common examples include those of Ullman and Sali [119],

Torralba et al.[115], and Leibe and Scheile [66]. Different implementations strike dif-

ferent balances between invariance and the representation of geometric structure. It

has been shown that patch based approaches can significantly improve performance

over detection via the use of a single template, but they are still limited in represen-

tative power by the underlying measure used to compare the image with the stored

prototype. Common choices include correlation, normalized cross-correlation, and

Euclidean distance. Further advancements have replaced grayscale patch matching

with matching in richer representations, such as a local histogram of edge orientations

representation.

Histograms of Edge Orientations. This increasingly popular type of represen-

tation has demonstrated discriminative power for many types of objects and tolerance

for several common image transformations. It can be described as a weighted his-

togram wherein each histogram bin collects votes from pixels near predefined image

locations and at particular gradient orientations. Examples include Freeman et al.’s

early work [39], Lowe’s SIFT [72], Riesenhuber and Poggio’s C1 features from their

Standard Model [91], Berg and Malik’s geometric blur [7], Belongie et al.’s shape

context [5], and Dalal and Triggs’ HoG [28].

The SIFT feature, described in detail in [72], was designed to be used in concert

with an interest operator in order to find correspondences in images of the same object

under different lighting and view angles. It therefore possesses several properties

that make it suboptimal for generic object recognition. For example, it does not

use rectified orientations, i.e., up and down are two different orientations. Also,

it is normalized by the dominant orientation in the image. It was noted in [72]

that the SIFT feature is a general framework, and its parameters can be modified

to suit individual tasks. This was done in [28], where the Histogram of Gradients

feature (HoG) was introduced and shown to be much more suitable for generic object

recognition.

In the HoG, a histogram is defined wherein each bin represents a spatial region

as well as a particular orientation range. In the published work, the best results
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were obtained with one bin per 8 pixels in either spatial direction, and four or more

orientations uniformly distributed from 0◦ − 180◦ (using rectified orientations). In

order to calculate the feature vector, the magnitudes of the brightness gradient at each

pixel are added to the appropriate histogram bins using linear interpolation between

the nearest eight bin centers in location and orientation. Finally, a normalization

step is applied. The performance of the HoG feature, for the task of pedestrian

detection, over a wide variety of parameters, histogram structures, and normalization

techniques, is explored in [28]. In our experiments we use the version with the optimal

set of parameters.

The C1 feature [91, 100] stems from Riesenhuber and Poggio’s Standard Model of

biological vision, which will be discussed in greater detail in chapter 3. The C1 feature

is very similar in structure to the edge histogram, but the smooth summation which

is used to divide votes from edge detections into histogram bins is instead replaced

with a local maximum operator. Each C1 element is the maximum edge response

within a local neighborhood of position, scale, and orientation space.

Bag of Words Feature Many modern object detection systems begin with an

interest operator i.e., a function which, given an image, returns a number of points

in scale space which are in some way mathematically interesting. Common examples

include the Difference of Gaussian, Förstner, and the Harris-Laplace interest opera-

tors [73, 47, 77]. The benefit of this preprocessing is that the image is reliably and

reproducibly dissolved into a sparse set of locations, which can then be each analyzed

with greater scrutiny. The bag of words feature, in general, refers to collecting a

sample of points from positive examples of the target class, and then representing

a new image by how well each of these points is matched in the new image. This

type of feature has been used in not only object detection [32, 109], but also in tex-

ture recognition [62, 106] and natural scene categorization [70]. It should be noted

that the interest operator is not necessary for a bag of words feature, some systems

sample uniformly across the image. For instance, Grauman et al.[43] sample features

using a uniform grid, and match to the training set using a specialized pyramid match

kernel to achieve state of the art performance on the Caltech 101 object recognition
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benchmark.

Part Based Features Also known as a component based representation, this

is a method of representing an object in terms of the confidence in detection of

object-specific parts. Early work, such as [67, 84, 78] used hand selected parts which

seem naturally salient to humans, such as the eyes, nose, and mouth for faces, or

the head, shoulders, and legs for pedestrians. Other systems have been designed

afterwards to learn object parts automatically from training data [93, 119, 51, 109,

68, 1]. The intuition behind part based representation is that while the object is

susceptible to wide variations in appearance due to lighting, occlusion, and pose

variations, the parts of the object are less vulnerable. While it has been shown that

part based representations have enormous potential for accurate detectors, there are

several weaknesses to the method. The first problem is deciding which parts to use

and automatically constructing a training set for them, in order to build a classifier.

Secondly, many objects are not well described by a geometric arrangement of parts.

For instance, roads have a reliable appearance, but are not easily expressed in terms

of parts. Finally, the detection of the parts themselves is another object detection

task, and is a recursion of the problem we are trying to solve in the first place. The

detection of the parts is usually performed using one of the other features mentioned.

Features Specifically for Texture Recognition In this thesis we will be de-

tecting some objects, such as roads and skies, which are more recognizable by their

textures than by their shape or organization of constituent parts. Although, there is

some overlap between object detection and texture recognition. Features commonly

used to represent textures include Haralick co-occurence matricies [89], features based

on the statistics of the local distribution of filters [1, 18, 104], Malik’s Texton feature

[90], and the bag of words feature [62]. In the system described in this work we will

employ the C2 feature from Riesenhuber and Poggio’s Standard Model [91, 100] in a

texture recognition sense. This will be described in more detail in chapter 3, where

will compare methods of texture based object detection.

Representation is only one piece of the puzzle when designing an object detection

system. Another equally important factor is how the representation will be used. A
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major division is drawn between generative and discriminative systems. Generative

systems model the object and the non-object classes probabilistically and then output

the more likely category a posteriori. Non-parametric systems, like k-Nearest Neigh-

bors, are often used for their simplicity, but are limited in their empirical performance.

Parametric generative object detection systems model the object and non-object dis-

tributions using some hand-selected probability distribution. The parameters are

usually set automatically using some form of parameter fitting, such as Expectation

Maximization (EM) algorithms [48].

Discriminative systems, instead of modeling the distributions, attempt to divide

the representation space into object and non-object zones. The most commonly used

methods are support vector machines (SVMs), boosting, and regularized least-squares

classification [48, 92]. In the systems described in this thesis, due to the (in general)

large number of features and small number of examples, we will rely most heavily

on boosting and linear-kernel SVMs. The implementations used in this thesis are

gentleBoost [48], and Chang et al.’s LIBSVM [24].

1.2.2 Context Awareness

The features and methods described above are concerned with the principled detection

of objects via their appearance. It is well known however, through psychophysical

and biological experiments [9, 26, 3], that object perception in humans depends addi-

tionally upon image features outside of the object. These features are referred to as

the object’s context. Without getting too tangled in semantic issues, this visual con-

text might be defined as those image features which are relevant to the object detection

task, but not affected by the object presence. Previous work has used many types of

contextual features to aide in object detection, such as the nature of nearby objects

[79, 108, 45, 22], the relative position and scale of those objects [105, 58, 38, 8, 46, 12],

as well as statistics of low level visual features of the scene as a whole [113]. In gen-

eral, in natural images, objects are strongly expected to fit into a certain relationship

with the scene, and context gives access to that relationship.

Previous context-enabled systems may be grouped into three sets: systems which
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share information via a network of object-detectors, systems which classify the scene

as a whole, and systems which employ a graphical model over a segmentation of the

image. As an example of a system from the first set, Torralba et al. [115] employ

boosting and graphical networks to learn associations between the likely co-occurrence

and relative position of objects within a scene. Fink describes a similar system [38] for

which detections of objects’ parts, as well as detections of other objects in a scene, are

employed in a modification of the Viola-Jones cascaded object detection architecture

[124]. This type of dense composition leaves no information source untapped, but

the downside of such structures is that any mutual dependencies must be computed

in an iterative fashion, first updating one object then the other. Moreover, if the

target object is the only labeled object in the database then there are no sources of

contextual information. Systems which pre-segment the image and then model the

relationships between neighboring segments, i.e. [59, 22], suffer from similar issues.

Mutual dependance is not a problem for systems which use context by processing

the scene as a whole, without first detecting other objects. Murphy et al.[114] employ

context as a scene ’gist’, which influences priors of object existence and global location

within that scene. The disadvantage here is that the scene must be taken as one

complete unit and spatially localized processing can not take place.

Some researchers believe that context only makes sense in a generative framework,

using for example random fields or graphical models of context and focusing on the

expected spatial relationships between objects. Even assuming that the world is best

described by such a hierarchal generative process, there is no reason to believe that

accurate and useful classifiers can not be built using a discriminative framework. This

is one of the main results of Vapnik’s statistical learning theory [123].

In this thesis we describe a new discriminative system for context recognition

which is simple to implement and feed-forward. It uses the relative positions of other

detected objects in the scene as well as low-level cues such as global positions, colors

and textures to build a map of the contextual support for the target object. The

internals of this algorithm are detailed in Chapter 4.
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1.2.3 Databases and Performance Measures

Modern object detection systems require training databases. Similarly, in order to

measure the performance of the system, we require a testing database. It has become

very important for the vision community to have publicly available databases and

performance measures so as to fairly compare and contrast the qualities of different

methods. The COIL, CMU PIE, Roth’s car detection, and more recently the Caltech

101 Object databases [80, 103, 1, 69], among many notable others, have provided

opportunities to compare systems between labs and demonstrate improvement within

the field. It is worthwhile to discuss a bit further exactly what sorts of measurements

are used to judge object detection systems, so as to understand the benefits and

shortfalls of the various options.

Restricting the discussion to binary object detection (as opposed multi-class de-

tection) for the moment, there are at least three distinct ways, excluding variations

upon these themes, of measuring the performance of an object detection system.

Multiclass detection measures are a bit less straightforward, and typically involve

averaging performance measurements across many binary problems.

Probably the most common measure of object detection performance is to build

a test database of image crops wherein each crop either contains an example of the

target object, or does not. Depending on how much variability there is in the position

and scale of the target object, this can be considered as a detection in clutter task,

as described in section 1.2.1. Examples of the use of this sort of measure abound

[29, 68, 34, 121, 64]. We will refer to this as the crop-wise measure, as it describes the

process of pulling crops of objects and non object from a database of natural images,

and then classifying the crops individually. The advantage of this sort of measure is

in its simplicity. With a bit of care, a test database can be built for which each image

either contains an example of the target object, or it does not; there is not much room

for ambiguity. Bootstrapping can be used to collect more difficult test examples, if

the test is too easy. The disadvantage of this sort of measure is that, as noted by

Roth in [1], because of the differing sampling strategies of the positive and negative
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test crops, the statistics of the test crops do not match very well with the statistics

of uniformly random crops taken from natural scenes. As a result, the measure is

more reflective of the classification power of the machine than its ability to reliably

detect objects. This can also be considered an advantage of this method in that the

classification power can be measured apart from concerns of different windowing or

neighborhood-suppression algorithms. Another confounding issue in the crop based

measure is the question of exactly how to fairly crop the examples from the scenes.

As classifiers can rely upon more or less of the surrounding context, there can be an

inherent bias in the manner of cropping. When presenting the results of the crop-wise

measurement, in the binary case, performance is illustrated via the receiver operator

characteristic (ROC), or, equivalently, Detection Error Tradeoff (DET) [29] curve. If

a single dimensional measurement value is required, then often the area under the

ROC curve, the equal error rate, or the true positive at some hand selected false

positive rate is used.

Another, perhaps more natural measure of performance requires that objects be

detected in full scenes. The bounding box of each detection is compared to a set

of ground truth boxes, which are often hand drawn. In order to determine the true

positives and false detections, some measure of box overlap is used. This measure of

performance, which we will refer to as the box-wise measure, has been used recently

in the PASCAL object detection challenge2, as well as a large number of past ob-

ject detection works (particularly in face detection) [98, 87, 85, 1]. The advantage

of measuring the detector performance box-wise is that it simulates the process of

actually detecting the object in natural scenes. The types and distributions of true

positives and false positives encountered in the scenes should match those of an actual

application. The disadvantage lies in the ambiguities in what constitutes an accurate

positive detection and the additional complexity involved in windowing and neighbor-

hood suppression, or whatever technology is used to generate candidate locations. In

box-wise detection, it doesn’t make sense to use the ROC curve, since the number of

negative windows in the data set is undefined. Instead, precision-recall (PR) curves

2http://www.pascal-network.org/
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are used to measure performance.

When dealing with amorphous objects such as roads or buildings, the above mea-

sures are inappropriate. There is too much ambiguity in which rectangular box best

outlines the object. In this case, two strategies are possible. One is to only take crops

from within the object, instead of around it, and measure performance as in a crop-

wise problem. Another strategy is to treat each pixel as an independent classification

problem, using the human labeling as a ground-truth mask. After the classifier has

operated on the pixels, true positives and false positives are judged via ROC. An

extension of this method has been used by Barnard in [22], where the image is first

segmented, and then segments are classified individually. One undesirable property of

these methods is that objects which contain more pixels (or equivalently are divided

into more segments) have more weight on the final measure. In our texture recogni-

tion experiments we use this measure and will refer to it as the pixel-wise detection

measure.

A fourth distinct measure of object detection performance is similar to the crop-

wise measure, except that the crops are not separated from the image as a whole.

Instead, each positive and negative test example is given in terms of a full image

and a region of interest. This region of interest can be defined as a bounding box,

polygon, location and scale, etc. The task here is to tell whether this region rep-

resents the target object or not. The critical difference between this measure and

the crop-wise measure is that detection systems have access to the whole image,

from which contextual information may be drawn. The difference between this and

the box-wise measure of performance is that the detection system is not responsible

for whatever mechanism generates candidate locations for classification, reducing the

computational complexity of the task while maintaining the utility of the comparison.

In order to have an appropriate training and testing database for our scene under-

standing studies, we have collected a large set of digital camera images taken in and

around the city of Boston. Of this database of nearly 8, 000 images, 3, 547 of them

have been hand labeled with the location of nine object categories. This database will

be discussed in more detail in Chapter 2. Our database and implementations of the
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associated performance measures have been made publicly available on the internet

[10].

1.3 Thesis Outline

This thesis describes a system for scene understanding in natural images and sev-

eral extensions thereto. We will begin the next chapter by discussing our image

database and appropriate object detection measures. In chapter 3, the structure of

the full scene understanding system is described, including several baseline measures

of performance. Afterwards, the thesis consists of extensions upon this basic scene

understanding model.

Chapter 4 discusses a novel system for discriminative contextual modulation wherein

the natural structure of the scene is leveraged to allow the detection of objects to in-

fluence the detection of others. This context classifier is combined with the detectors

designed in chapter 3 to improve detection scores.

More extensions are described in chapter 5, focusing on novel image features. It

will be shown here that features designed to reproduce gestalt-like qualities assist in

the detection of real world objects. These new features are compared in efficiency

and power to similar randomly generated image features. We will also discuss in

this section a powerful language for describing image features and the feasibility of

searching the space of image features for highly discriminative subsets.

In chapter 6 we will discuss some research into feedback mechanisms for hierar-

chies of visual features. We will demonstrate that depending on the task, different

structures of tapping the standard model can be the must successful.

Chapters 7 and 8 discuss the scope of the thesis, what has been accomplished,

and what areas are most ripe for improvement. We predict fruitful future directions

within this line of research in this section.
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1.4 Main Contributions

• The main contribution of this thesis is the Street-Scenes infrastructure [13]. The

detailed description of the system is contained within chapter 3. A system has

been built which is capable of detecting a wide variety of object categories, from

buildings to trees to pedestrians, in natural scenes. Furthermore, the measures

performed indicate that the individual components are at least on par with the

state of the art. These same performance levels are improved further in later

chapters 4 through 6. The system as a whole is more an art of engineering than it

is of science, as much of what comprises the system, such as the standard model

features, texture recognition, windowing and local neighborhood suppression,

has been documented in previous publications.

• A contextual learning system, built on top of our previous architecture, is de-

scribed in chapter 4. This context leveraging system is different from previous

attempts at context aware systems and demonstrates that contextual biasing

can be performed in a discriminative framework [128].

• In chapter 5 we describe improvements to this system through the development

of novel image features. These features are an attempt to capture mid-level

visual concepts, such as continuity, closed contours, symmetry and parallelism.

A biologically motivated algorithm for calculating each is presented, and the

benefits of using such features are measured, such as in the Caltech 101 object

database where these features have enabled state of the art levels of performance

[15].

• Another contribution not to be overlooked is the public StreetScenes database

and performance measures. The database and its properties are described in

chapter 2. It is hoped that this public measure of scene understanding will

further meaningful task-oriented comparisons between systems in the vision

community [11].

• Finally, we offer an ontology of feedback mechanisms for combining feature
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modalities in visual hierarchies [129]. These feedback mechanisms have enabled

us to further improve performance in our object detection mechanisms.
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Chapter 2

The StreetScenes Database

The street scenes database is a collection of images, annotations, and performance

measurements designed to train, test, and quantify the performance of an object

detection system. In this chapter we will discuss in detail how this database was

constructed, what advantages and limitations it has over other object detection

databases, and what choices were made during the implementation of the detection

performance measures.

2.1 Why Build Our Own Database

While there exist object detection databases that involve the detection of multiple

objects, such as the COIL and Caltech 101 database [80, 69], among many others,

and there are also object detection databases which involve the detection of objects in

real scenes, such as the car detection database of Roth [1], until recently there has not

been a database which involves the detection of multiple image categories in natural

scenes. Our goal in this project was to learn to dissect entire scenes, giving meaning

to a majority of the pixels in each image, paving the way towards even deeper scene

understanding. StreetScenes is the first publicly available database of a large number

of labeled images from the same scenario where each image is labeled consistently with

the same object categories and using the same criteria. As there are a wide variety

of different objects to detect, it is possible to use the database to explore contextual
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notions and the relationships between different objects. We selected scenes taken from

the street as the domain for this project for several reasons, including the variety of

objects which reliably appear, the regularity of the structure within the scenes, and

the obvious applications to security and surveillance of a system which understands

images of public areas.

A selection of StreetScenes images and their associated hand labels are illustrated

in Appendix A.

2.2 Building the Database

2.2.1 Image Acquisition

The collection of the StreetScenes images was performed by payed employees of the

Center for Biological and Computational Learning (CBCL) during the period between

January 2003 and July 2004. The images were captured using two identical Sony

DSC-F717 Digital cameras, using the automatic settings, and setting the capture

resolution to 1280× 960 pixels1. The camera was set to automatically compress the

images into JPG format, and they were transferred via IP to a secure FTP site, where

they would later be labeled. Photographers (of which there were a total of 13 people)

were instructed not to interfere with the camera’s default settings.

Before being allowed to capture photographs, photographers were given hands-on

instruction on the type of pictures and procedures necessary for the project. Pho-

tographers were instructed to take pictures on plane with the horizon, tilting the

camera neither toward the ground nor toward the sky. Pictures were to be taken

from the sidewalk, cross walk, or the street, and subject matter was to be selected as

randomly as possible from the 180◦ arc from straight along the road in one direction

to along the road in the reverse direction. Photographers were instructed not to take

photographs which were too similar. This was to be accomplished by not shooting

the same subject matter without moving about 30 feet first. All photographs were

1The camera is capable of a maximum resolution of 2560× 1920 pixels.
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number mean mean mean mean
of examples width height center (x) center (y)

car 5,799 344 189 635 531
pedestrian 1,449 89 196 640 530
bicycle 209 179 199 628 591
building 5067 590 461 635 290
tree 4,932 413 382 627 275
road 2,562 518 249 642 135
sky 3,400 1,167 460 643 720
sidewalk 3,658 742 265 629 720
store 590 401 281 623 397

Table 2.1: Some basic statistics of the labeled objects in the StreetScenes database.
All measurements are given in pixels. For reference, each image is 960× 1280 pixels,
and there are a total of 3,547 labeled images in the database.

taken between dawn and dusk, there are no night-shots, and there are no photographs

taken in the rain, although there is fallen snow visible in some of the images.

Photographers were given subway fare and instructed not to densely photograph

locations which have already been recorded. By the end of the project, nearly 8, 000

StreetScene images had been collected from various areas such as urban Boston and

suburban Summerville. Some images were removed due to inappropriate location,

subject matter, lighting, motion blur, or bad camera settings.

2.2.2 Image Labeling

Of the database of StreetScenes images, exactly 3, 547 have been hand labeled. In

order to hand-label an image, a human must draw a polygon around each example of

any of the nine selected object categories. The selected categories, and some statistics,

are described in table 2.1. Close individual instruction was given to labelers of the

database so as to promote consistency throughout the database. Inevitably, however,

there is some variability in how the polygons were drawn. Some examples of object

labels are illustrated in appendix A. More detail into the labeling process is given on

an object-by-object basis below.

cars In the StreetScenes database, the car class includes all motorized vehicles
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with more than two wheels, including cars, trucks, busses, and construction vehicles.

Cars are labeled only if they are larger than approximately 64 pixels in width and

more than 75% visible, or, equivalently, less than one quarter occluded. Labelers

were instructed draw the polygon as tightly as practical around the car, imagining

the continuation of the car if it were occluded. This choice was made so as to improve

correspondence between examples normalized in position and scale. Cars, and other

objects, which exit the scene are sometimes labeled with polygons which exit the frame

of the photograph. The photograph boundary was considered to be an occluding

boundary.

pedestrians Similarly to cars, pedestrians are labeled only if they are more than

75% visible and larger than 32 pixels in height. The database contains pedestrians

walking as well as standing still. In some situations where many pedestrians are visible

in a group the labelers were instructed to do their best to label the pedestrians which

were the least occluded.

bicycles Bicycles are a difficult class with comparatively few examples in the

database. Labelers were told to label bicycles with and without riders. Motorcycles

were also included in the bicycle class. Bicycle racks containing too many bicycles to

label individually are labeled with one bicycle polygon, as if bicycles were a texture.

buildings The building class includes structures such as skyscrapers, office build-

ings, and domestic homes. Because it is often difficult to determine where one building

ends and the next begins, multiple buildings are very often included in one bounding

polygon. The labelers were instructed to imagine the continuation of a building if it

is obscured by cars, trees, or the like.

trees The tree class includes summer foliage as well as barren winter trees. It was

impractical to label each tree individually, so multiple trees are usually included in

one bounding polygon. Because of the sparse nature of the trees in winter, labeling

with polygons is particularly difficult. Labelers were instructed to capture as much

of the tree as possible within the polygon. It was noticed that labelers sometimes

imagine tree-trunks with their polygons even when none are plainly visible. This

practice was discouraged.
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roads The vast majority of road examples are paved, although there exist a few

examples of construction work which are labeled as road. Labelers were instructed to

imagine the boundary of the road heading into the vanishing point, and it was to be

labeled even if partially occluded by cars or pedestrians. The road was not labeled

when it was occluded by buildings or completely occluded due to heavy traffic.

skies The sky class is labeled wherever open sky is visible. Ambiguous cases occur

where trees gradually grow dense enough to render the sky invisible. Labelers were

to use their own judgement as to where the sky ends.

sidewalks The sidewalk class was labeled using rules similar to the road class.

The sidewalk boundary is imagined to be continuous even when the actual boundary

is obscured by pedestrians or parked cars.

stores The store class is probably the most ambiguous class labeled in the StreetScenes

database. Labelers were told to draw polygons around the store fronts of buildings

with “signs” or “where they sell things.”

All labeling of the StreetScene database was performed with a custom image

labeling tool implemented in MATLAB. Fig. 2-1 presents a screen shot of the user

interface of this tool running in a windows version of MATLAB. This image labeling

tool allows a user to browse directories for images, open labeling files, view previously

made annotations, and add or delete annotations. In general, the photographers

mentioned in sec. 2.2.1 were the same individuals who were employed in the labeling

process. On average, images were labeled at the rate of one per 3 minutes.

It should be noted that a very similar methodology for labeling images was devel-

oped by Torralba et al.in the design of the LabelMe database [94]. LabelMe is another

image database, similar to StreetScenes, but the topic is not similarly constrained to

one domain. The LabelMe database is an open database, in that users are allowed

to log in and add images and labels via an internet application. Between the two

databases, there are a number of differences. StreetScene images are constrained to

be only images of the street, taken with the same camera, and the same nine objects

are labeled in the same way, as far as practical, in each image. LabelMe has a larger

database with a much wider variety of objects and more variability in the labeling
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Figure 2-1: A screen-shot of the interface to our MATLAB image labeling tool.
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policy. Translation has been supplied along with the StreetScenes database so that

the two databases are fully compatible.

2.3 Performance Measures

Along with the images and the annotations, the StreetScenes database includes a

package of MATLAB functions for working with the database and measuring ob-

ject detection performance. As mentioned previously, there are a number of unique

ways of measuring the performance of an object detection algorithm, and because

different performance measures are more or less applicable to certain object types or

types of detector, we have implemented the four detection measures outlined here.

More detailed information on the use of the associated MATLAB functions, including

interfacing and parameter structure, is available in appendix B

Crop-wise detection measure These functions allow the user to extract positive

and negative crop examples of target objects from the database. Negative samples

are selected from a distribution of scales that matches the distribution of the positive

examples. Negative samples are allowed to overlap the labeling of a positive object

example by no more than 10 percent. The crops are then randomly split into training

and testing sets, and multiple trials are performed. The same random splits are

repeatable, allowing for greater statistical significance when comparing performance

between classification systems. The measure outputs the ROC curve and associated

statistics.

Box-wise detection measure The box-wise detection measure compares a list

of proposed object detections, in terms of their bounding boxes and associated con-

fidences, to the bounding boxes of the baseline hand-drawn polygons. A detection is

considered to be a true positive if it matches well enough to a baseline bounding box.

Without getting into too much detail, the detection A is considered to be a match to

a baseline object B if area(A∩B)
area(A∪B)

> θ where θ is a free parameter controlling how close

A and B have to be to match. The default value, used in our experiments, is θ = 1
2
,

and is the same as used in the PASCAL object detection challenge. One difference
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from the PASCAL challenge is that in the challenge, objects can have variable aspect

ratios, i.e., they can be short and wide or thin and tall. The implication is that in

order to achieve the θ overlap criterion, some crude level of object segmentation has

to take place. In our system there is an option to mandate that all bounding boxes

will adjust to have the same square aspect ratio, making the task slightly less segmen-

tation oriented. The measure outputs the PR curve and a datastructure indicating

which detections matched which baseline objects.

Pixel-wise detection measure Conceptually, the pixel-wise detection measure

is very simple, a number of image locations are selected and must be labeled. In the

implementation we provide, these points are automatically selected by extracting a

certain number per target example. A system parameter controls how close to the

polygonal border these points may be selected, defaulting to 15 pixels. Due to the

imperfections in polygonal labeling is important to set this parameter wide enough

that there is confidence that most points lie well within the object. The algorithm

controls that points from the same original image are either all training or all testing.

In other words, if two points are extracted from the same image, they will either both

be training, or both be testing.

Box-wise detection measure with provided boxes This is a measure very

similar to the box-wise detection measure, but candidate boxes are provided by the

test. In the binary case, positive boxes around known object locations are provided

along with similarly distributed boxes of known negative locations. The task is for

the classifier to determine which boxes stem from positive locations. It is possible

to generalize to the multiclass case by simply providing boxes sampled from each

desired class. This test simulates an attentional mechanism where object candidates

need to be verified and labeled. This task also has the property that the entire image

is visible to the detection mechanism and can be leveraged for context unlike in the

crop-wise measure.
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2.4 Limitations of the Database

The StreetScenes database is a powerful tool for training and testing scene-understanding

algorithms. There are, however, several shortcomings and limitations to the database.

When hand labeling the objects it was found that there is a great deal of ambiguity

as to when an object should be labeled, and when it should not. For instance, in

some photographs taken in the densely urban area during rush-hour, the entire road

is invisible due to the dense traffic. Furthermore, each car is mostly occluded by the

car behind it. As a result, under the rules defined above, neither the road nor the

cars can be labeled at all. A future addition or improvement to the database may

include ’car-as-texture’ as an object type, wherein any part of a car or cars which

is visible can be labeled. Other objects have similar ambiguous labeling situations.

Also, due to time limitations and labeler fatigue, many objects are not labeled as

tightly as they could be by the bounding polygon.

2.5 Download and Use

The StreetScenes database is available for download and use at the web-page for

the Center for Biological and Computational learning2. The terms and conditions

of the use of the database are also available there. The database includes images,

annotations, and code for measuring performance.

2http://cbcl.mit.edu

53



54



Chapter 3

StreetScene Understanding Using

the Standard Model Features

This chapter describes the design and implementation choices made in the develop-

ment of our object detection system. As will become apparent, different types of

object require different strategies for detection, but every detector within this system

relies upon the same image features, i.e., the Standard Model Features (SMF) de-

rived from Poggio et al.’s Standard Model of biological vision [91, 101]. This model,

and the associated features, will be described more completely in the next section,

3.1. The classifiers and detection structure are described afterwards in sections 3.2

through 3.4. After reporting some measures of system performance, we will discuss

the system in general terms and compare it to other state of the art vision systems.

3.1 The Standard Model Feature Set

The Standard Model is a quantitative theory modeling the early stages of the feed-

forward path of object recognition in primate visual cortex. It is so called because

it attempts to summarize a core of well-accepted facts about this system: that early

visual processing builds invariance through a hierarchy of processing stages, that the

receptive fields of units along the hierarchy increase in size as does the complexity of

the preferred stimulus, that the initial stages do not require feedback, and that there
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is greater plasticity at higher visual stages than lower ones. For a comprehensive

survey of the model and associated biological and psychophysical experimentation,

please see the relevant literature [91, 101, 100]. It should be noted that the Standard

Model describes a set of properties that such a vision system should have, but dif-

ferent model instantiations are possible. We will use the term “Standard Model” to

refer to the model in abstract as well as the implementation used here.

In this thesis we will make use of this model by using the values at intermediate

stages of one particular instantiation of the model as visual features. These features

will be used as an image representation to our computer vision system. In section

3.1.1 we will describe the standard model and then afterwards elaborate how it relates

to computer vision in section 3.1.2.

3.1.1 Introduction to the Standard Model

The architecture of the Standard Model, as it is instantiated for this work, is summa-

rized in Fig. 3-1. This hierarchal model consists of four layers of computational units

wherein simple (S) units alternate with complex (C) units. The S units combine their

inputs using RBF-like operations, responding strongly only when their input is close

(in an L2 sense) to their preferred input. The C units respond with the maximum of

their inputs, thereby introducing invariance.

The first S layer, layer S1, consists of units with preferred responses in the form of

oriented Gabor wavelets [41], as defined by equation 3.2. The appropriate parameters

for these filters have been selected by matching biological neural responses from brain

area V1. The receptive fields of these units are tesselated in such a way that they

cover the scale-space of the image. The exact parameters used in this implementation

are listed in Table 3.1, but in brief, 16 different filter sizes are used, and four different

filter orientations. The S1 units respond with the absolute value of the filter response.

The units of the next layer, C1, pool inputs from the S1 layer by responding with

the maximum value of their input. Each C1 unit is connected to a local scale-space

neighborhood in S1, i.e., a small convex region in position and scale. The size of

this neighborhood and the density of the tessellation are parameters of the model.
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Figure 3-1: An illustration of the 4 hierarchal levels of the Standard Model system used in
this work. The top half includes a schematic of the information flow through the system.
The bottom half includes some real images sampled from the model as it processed an image
from the StreetScenes database.
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C1 layer S1 layer
Scale Spatial pooling sub-sample filter Gabor Gabor
Band S area length size σ λ

Band 1 8× 8 4
7× 7 2.8 3.5
9× 9 3.6 4.6

Band 2 10× 10 5
11× 11 4.5 5.6
13× 13 5.4 6.8

Band 3 12× 12 6
15× 15 6.3 7.9
17× 17 7.3 9.1

Band 4 14× 14 7
19× 19 8.2 10.3
21× 21 9.2 11.5

Band 5 16× 16 8
23× 23 10.2 12.7
25× 25 11.3 14.1

Band 6 18× 18 9
27× 27 12.3 15.4
29× 29 13.4 16.8

Band 7 20× 20 10
31× 31 14.6 18.2
33× 33 15.8 19.7

Band 8 22× 22 11
35× 35 17.0 21.2
37× 37 18.2 22.8

Table 3.1: The S1 units perform Gabor filtering at many scales, and their responses
are pooled over position and scale in by the C1 units. This table is a summary of the
S1 and C1 model parameters (see also Fig. 3-1 and accompanying text and equations
for details).

In our implementation, C1 units pool over two adjacent scales, and a spatial region

dependant on the scale band. The C1 units did not pool over orientation, as there

were only 4 distinct orientations in the S1 layer. C1 units were tesselated such that

the density was reduced in the scale direction and also in both spatial directions.

F (x, y) = exp

(

−
(x2

o + γ2y2
o)

2σ2

)

× cos

(

2π

λ
xo

)

, s.t. (3.1)

xo = x cos θ + y sin θ and yo = −x sin θ + y cos θ. (3.2)

In the S2 layer, like the S1 layer, units perform an RBF like function over their

inputs. Whereas in the S1 layer the input was the raw pixel values, and the preferred

stimulus pattern was Gabor like patterns, in the S2 layer the input is taken from units

in the C1 layer, and the preferred stimuli are a set of N patches P ≡ {Pi|i ∈ 1..N}.

These patches are small crops of previously seen stimulations of the C1 layer, selected

by randomly sampling patches from natural images. Each patch includes information
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from the full set of orientations, but only one scale band. If the patch has a spatial

extent of 8 pixels, then it will consist of 8 × 8 × nθ values, where nθ is the discrete

number of orientations, in our case, 4.

Each S2 unit is connected to a local neighborhood of C1 values, i.e., the C1 values

with receptive fields centering over the same small range of x, y, and orientation θ.

The S2 unit compares this vector of input X to Pi and computes an RBF (Eq. 3.3),

where γ is a free parameter controlling the tightness of the tuning1.

S2 = exp
(

−γ||X − Pi||
2
)

(3.3)

The units in the S2 layer are organized so as to tessellate the C1 scale space. In

addition, at each location there are exactly N S2 units corresponding to the different

Pi. In our implementation, patches were cropped at four different sizes: 4, 8, 12, and

16 pixels.

The C2 units, similarly to the C1 units, compute a maximum over their inputs. In

some implementations of the Standard Model, this maximum is over the entire scale-

space. This means the entire image is would be reduced to N values corresponding

to the best match to the N patches. Newer, more detailed models involving higher

processing add C2 units such that, like the C1 units, the maximum is computed only

from a subset of S2 units near to some location in the S2 scale-space. In this case

different C2 units represent different positions and scales within the image. The size

of this pooling region is another parameter.

3.1.2 Standard Model Features from a Computer Science

Point of View

.

The first layer, S1, is an application of Gabor filters [41, 30] to the input image,

which is fairly standard and has been used for many computer vision problems [18,

96, 81]. The S2 and C2 layers are an application of a patch based approach, which

uses correlation with smaller image crops as its basic building block. In these types

1This free parameter also was set by matching biological data.
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of systems, the best match to some memorized prototype is returned within some

legal search area. As mentioned in section 1.2.1, this method has become common,

and has been used successfully for texture synthesis [33], super resolution [40], object

detection [120, 115] and object-specific image segmentation [17].

The only layer which might seem unorthodox from a computer vision perspective is

the C1 layer, in which the outputs of the S1 layer are being maximized locally. While

many systems maximize the output of a detector over the entire image, this has been

done locally only recently. For part based object detection [120, 115], detectors of

each part are learned independently and then applied to regions where the parts

are expected to appear. The SMF seem unique in that general purpose filters are

maximized over local regions in the image.

In order to explain the utility of C1, we invoke a scale-space terminology (see [71]

for an overview). scale-space theory was mostly concerned at first with the Gaus-

sian scale-space. This scale-space has many desirable properties such as separability,

linearity, shift invariance, isotropy, homogeneity, and causality. The last property is

an important one: causality means that no new level sets are generated by moving

to coarser scales. A related property is the non-creation of local extrema in coarser

scales.

In our application, local maximization is used to move from a fine scale to a

coarser scale in order to make the C1 layer invariant to local edge translations. As a

pseudo scale-space, local maximization has some desirable properties: it is separable

(one can apply it over the rows and then over the columns), it is shift invariant, and

it is homogeneous (applying it repeatedly corresponds to moving into coarser and

coarser scales). However, in general, it is not an appropriate scale-space. Among

other problems, applying it to an image may create new local extrema.

However, in the SMF framework, the local maximum operator is applied to a set

of Gabor filtered images, which are known to be a sparse representation of the original

image. The max scale-space is successful in preserving the amplitude of the sparse

maxima, whereas the Gaussian scale-space smooths them out.
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3.1.3 Comparisons to Other Commonly Used Vision Fea-

tures

The vision features derived from the Standard Model have some properties which

make them in some ways similar to features already in use by the computer vision

community. As mentioned in chapter 1, one may wish to draw a comparison between

the C1 feature and the popular histograms of oriented edge filter features [72, 5, 28].

Both features collect local oriented edge responses and report them in a way which

captures some local invariance to position and scale. The difference here being that

in order to build a histogram, the edge responses are added into bins, i.e., the bins

are in a way taking a weighted sum of candidate edge locations. In contrast, the C1

features are reporting the local maximum of the afferent S1 oriented edge units.

The most striking difference in these two strategies is in the structure of the

stimuli which provokes their strongest response. Since the C1 unit is using a max,

it’s preferred stimulus is one in which there is at least one very strong edge response

within its receptive field. In contrast, since histograms rely upon weighted sums,

the stimulation which provokes the maximum response will be one in which there is a

great deal of oriented energy at all locations within the histogram bin’s receptive field.

One reason why C1 might be preferable in this situation is illustrated in figures 3-

2 and 3-3. As edge responses in natural images tend to exhibit characteristics of

sparsity [82], it may be very useful to be able to distinguish sharp local signals from

low-level spatially-extended ones, such as from textures.

The C2 features have a parallel within the field of patch-based features since, in

essence, each S2 feature is computing an RBF against a preferred patch. This patch,

rather than grayscale, is recorded in C1 format. The advantage to matching in the

richer C1 representation lies in the greater expressive power to represent complex

stimuli, such as object specific parts or textures, while maintaining that low-level

invariance to position and scale captured by the C1 features. Experiments using a

modified model where C2 is computed by comparing S1 representations without the

intermediate C1 stage show weaker discrimination between object classes.
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Figure 3-2: Max scale-space images of Lena (top row) and of the gabor filtered
version of Lena (bottom row). While the gray-value image gets heavily distorted, the
information in the sparse edge image is enhanced.

Figure 3-3: Gaussian scale-space images of Lena (top row) and of the gabor filtered
version of Lena (bottom row). While the gray-value image degrades gracefully, re-
vealing structures at different scales, the sparse edge image fades away.

Finally, the choice in the extent of the neighborhood size in computing C2 is similar

to discoveries in the patch-based representation literature regarding the importance

of relative position information when calculating patch-based feature. Some objects,

usually those with strong example-to-example correspondence, benefit from informa-

tion about the relative position of the detected features. Limiting the pooling area

for the maximum computation to that area of expected location results in improved

performance. The cost of course is a loss of generalization to larger variations in pose

and other common image transforms.
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Object car pedestrian bicycle building tree road sky sidewalk store

Type shape-based texture-based

Table 3.2: The shape-based and texture-based object categories in the StreetScenes
database

3.1.4 Computational Concerns

Currently, for one 960 × 1280 pixel StreetScenes image it takes approximately 300

seconds to compute the full set of StandardModel features in MATLAB on a 2GHz

CPU with 4MB of RAM. It should be noted, however, that the implementation

was not designed for maximum speed, and new implementations and approximations

have improved this significantly. These efforts are current research in the lab, and

publication will be forthcoming. Of course, the process is much faster in low resolution

images

3.2 System Overview

It was decided at an early stage of this project to group the object categories in

the StreetScenes database into the following categories: those objects which have

spatial part-to-part correspondences, and those objects which do not. Loosely, given

two examples of an object class and any point on one example, if a corresponding

point can be accurately found on the other example, then this class exhibits such

correspondence, and we will refer to the class as shape-based. If, on the other hand,

the class does not have such correspondence, then we refer to the class as texture-

based. One can certainly imagine object categories which push these boundaries,

but for the most part the categories in our StreetScenes database can be devided

unambiguously. Table 3.2 summarizes the StreetScenes objects.

In the system described here, the two types of object classes are handled using

different learning strategies. Detailed descriptions of the algorithms for texture-based

object detection and for shape-based object detection are given below, followed by

appropriate performance measurements.
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3.3 Shape-based Object Detection

In order to detect shape-based objects, the system presented here uses the C1 fea-

tures from the SMF set in combination with the well-known windowing technique.

Windowing is used to enable the detector to recognize objects at all positions and

scales, given that C1 features have only limited position and scale invariance.

3.3.1 Classifier Construction

The training and testing data for these detectors is extracted using the cropping

framework described in 2.3. Using only part of the StreetScenes database, leaving

the remainder for future independent testing, square object and non-object crops

were extracted for the three shape-based object classes and resized to 128 × 128

pixels. These crops were then converted into C1 SMF space as detailed above in

Sec. 3.1. In this way, each training example is converted into a 13, 365 dimensional

vector. Both gentleBoost, a variant of boosting, and SVMs were used to model

each binary problem. Results showing a comparison of the two methods for this

problem are shown in table 3.3. These measurements were performed using the

crop-wise paradigm outlined in Sec. 2.3 and the C1 image features. Briefly, the

crop database was randomly divided into 2
3
training and 1

3
testing, and SVM and

gentleBoost classifiers were trained and tested for each split. The results show that

the two learning methods perform statistically equally at this task.

3.3.2 Comparison to Baseline Algorithms

In order to get an idea of the relative performance ability of the C1 based detectors, we

compare them to classifiers trained on these same databases using other well known

object detection techniques. We use the same crop-wise detection task as above, and

report the results in Fig. 3-4. The thick dashed curve labeled “Grayscale” indicates

the results of training a system using a simple grayscale feature vector instead of the

C1 values. In this system, each example is normalized in size and histogram equalized

to build the feature vector.
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car pedestrian bicycle

Boost SVM Boost SVM Boost SVM

AUC 99.2± 0.3 99.0± 0.3 90.4± 1.7 90.8± 1.8 98.5± 0.5 98.3± 0.6

EER 4.4± 0.8 4.8± 0.8 16.2± 2.1 15.6± 2.3 5.8± 1.6 6.4± 2.0

TP@FP=1.0% 88.6± 3.2 85.1± 4.6 41.1± 6.2 48.6± 8.7 77.7± 6.6 77.0± 6.2

TP@FP=0.1% 70.0± 7.5 60.7± 9.9 8.9± 5.0 6.0± 5.1 44.7± 20.9 46.3± 19.7

Table 3.3: Statistics comparing performance of gentleBoost with SVM for the C1 based
detection of cars, pedestrians, and bicycles on a crop-wise object detection task. Mean
and standard deviation single dimensional measures are given for Area Under Curve, Equal
Error Rate, True Positive Rate at False Positive Rate = 1.0%, and True Positive Rate at
False Positive Rate = 0.1%. All statistics are displayed in percent score. We will show
that the choice of SVM vs. Boosting leads to performance differences which are very small
compared to the difference in image representation.

Another base-line detector is built using the Histogram of Gradients (HoG) fea-

tures described by Triggs in [28]. This system is similar to C1 in that it represents

images using local oriented energy, but it also has major differences.

For a patch based system, we use a system similar to that described by Torralba in

[115]. Each patch-based feature fi is associated with a particular patch pi, extracted

randomly from the training set. The value of fi is the maximum of the normalized

cross correlation of pi within a window wi of the image. This window of support wi is

defined as a rectangle three times the size of pi and centered in the image at the same

relative location from which pi was originally extracted. The advantage of these types

of features over the gray-scale features is that the patch features can be highly object-

specific while maintaining a degree of position invariance. For the results illustrated

in Fig. 3-4, the system is implemented with 1, 024 such patch features with patches

of size 12× 12 in images of size 128× 128.

Another system compared to in Fig. 3-4 is a part-based system as described in [65].

Briefly, object parts and a geometric model are learned via image patch clustering,

and detection is performed by re-detecting these parts and allowing them to vote for

objects-at-poses in a generalized Hough transform framework. While good results for

cars were reported in the original work, we see that for the pose-independent learning

problem, this patch-based constellation model is outperformed by the SMF system.

Finally, for a complete comparison, we include results for a detector of our shape-
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based objects which is based on the C2 features instead of the lower C1 SMFs. This

system calculates one C2 value per patch for each image. We use a collection of

444 patches extracted at random locations from the training crops, 111 each from 4

different sizes, 4, 8, 12, and 16 pixels. We found that, for these objects, the detector

benefitted from some notion of feature locality. Calculating the maximum S2 response

in a box around the relative extracted location of the prototype was in general better

than using the maximum over the entire image. Figure 3-5 illustrates how the size

of the maximization window, from S2 to C2, effects the classifier performance. It was

also found that using crops specifically only from the positive training examples did

not significantly improve performance over those crops which were extracted from

both the negative and positive data.

For the SMF, ”grayscale”, Histograms of Gradients the “local patch correlation”

classifiers, the statistical learning machine is the gentleBoost classifier. Performance

is no better when using a linear or polynomial kernel SVM.

The classifiers employing the standard model feature C1 based classifiers were

dominant for the car and bicycle classes, and second best for the pedestrian, being

beaten only by Triggs’ Histogram of Gradients feature, which, it should be noted,

was the object for which the Histogram of Gradients’ parameters were tuned. The

C2 based classifier also performed strongly for the car and bicycle classes.

3.3.3 Full Shape-based Detection System

In order to build a system which is capable of detecting these objects at all positions

and locations, the well known windowing technique is used, i.e., a dense subset of all

possible square windows is cropped from the test image, converted into the feature

space, and passed through the classifier. The result is a real-valued detection strength

as a function of location and scale. Local neighborhood suppression is then used

remove redundant detections. The parameters and properties of the windowing and

neighborhood suppression algorithm we use are listed in appendix B. In Fig. 3-6 we

present some typical results of this type of detection. In order to quantify the fidelity

of this sort of detector, we performed a box-wise detection task using 100 images
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Car: Statistics

C1 HoG C2 Part-Based Grayscale Patch Correlation

AUC 99.2± 0.3 97.6± 0.4 97.8± 0.4 93.0 96.0± 1.0 75.4

EER 4.4± 0.8 7.8± 1.2 7.7± 1.0 14.1 9.3± 1.5 31.3

TP@FP=1.0% 88.6± 3.2 66.3± 5.5 65.7± 5.0 20.2 73.0± 4.5 7.0

TP@FP=0.1% 70.0± 7.5 36.9± 9.8 33.8± 10.0 3.1 49.8± 8.0 1.3
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Pedestrian: Statistics

C1 HoG C2 Part-Based Grayscale Patch Correlation

AUC 90.4± 1.7 97.1± 0.8 94.4± 0.9 93.3 81.5± 2.2 85.9

EER 16.2± 2.1 8.1± 1.0 13.0± 1.7 14.8 24.9± 2.1 22.2

TP@FP=1.0% 41.1± 6.2 69.0± 6.2 47.5± 6.2 15.3 20.4± 4.0 14.7

TP@FP=0.1% 8.9± 5.0 39.7± 12.3 20.4± 6.5 4.7 5.7± 3.4 4.7

Bicycle: Statistics

C1 HoG C2 Part-Based Grayscale Patch Correlation

AUC 98.5± 0.5 95.6± 2.1 96.0± 1.2 87.7 77.7± 3.6 70.2

EER 5.8± 1.6 10.2± 2.9 10.5± 2.8 19.1 28.9± 3.4 35.0

TP@FP=1.0% 77.7± 6.6 61.5± 7.5 51.4± 10.8 14.6 17.5± 7.8 5.5

TP@FP=0.1% 44.7± 20.9 27.7± 14.7 25.0± 10.2 5.4 4.8± 5.1 0.5

Figure 3-4: ROC curves and statistics comparing performance several different object
detection systems using a crop-wise measure. The details of each system are described
in the text. The table shows, for each system, the area under the ROC curve (AUC),
equal error rate (EER), and the true-positive rate at two specific false positive rates. All
statistics are shown in percentage. Standard deviations are not shown for the “Local Patch
Correlation” or “Part-Based System” because these systems were tested only one time.
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Figure 3-5: The performance of the shape based car detector using C2 features depends on
the size of the maximization window used to compute C2 from the S2 features. On the far
right the maximization window is one pixel, meaning that C2 is simply the maximization
of the S2 over scale, no spatial maximization takes place. On the far left the maximization
takes place over nearly the entire spatial extent of the image.

distinct from those used in the above training and testing paradigms. The results of

this experiment are illustrated via PR curves in Fig. 3-7. The grayscale detector is

used as a baseline for comparison.

3.4 Texture-based Object Detection

Texture-based objects are those objects for which, unlike shape-based objects, there is

no obvious visible inter-object part-wise correspondence. These objects are better de-

scribed by their texture than the geometric structure of reliably detectable parts. For

the StreetScenes database the detectable texture objects currently include buildings,

roads, trees, and skies. It was decided that, at this stage of the project, the side-

walk and store classes were too dependant on contextual relationships to be detected

simply by texture analysis.
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Figure 3-6: A detection task involving the StreetScenes shape-based objects. The C1

features are used along with windowing and local neighborhood suppression in order to
detect cars in full images. The system is charged with a false detection whenever the
bounding box overlaps a unique ground-truth box by less than 50% of the union area.
Several false-detections and false-negatives are visible in these images. Still, this task is
very difficult, as there is no motion, and the cars may be at any pose without a pose-
segmented training database. Note that the orange annotation square are difficult to see
without a color display.
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Figure 3-7: Precision-Recall curves for the car detection in natural scenes problem using
the first 300 scenes as training and the next 100 as test. C1 features are compared to
grayscale features. From this curve we can surmise that with this implementation of the C1

car detection system, in order to detect 50% of the cars we must suffer approximately 50%
false detections.
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3.4.1 Methodology

Texture based object detection systems were built in a pixel-wise manner, as described

in Sec. 2.3. For the four object classes described above, locations of positive and

negative object presence were selected from the training portion of the database.

Locations of positive object presence for object type A were selected such that each

such point was within a polygon labeled as class A, was no more than 15 pixels from

the border of this polygon, and was greater than 15 pixels from the border of any

polygon of a different class. This was done so as to prevent the collection of erroneous

textures into the positive database due to object occlusion or loose labeling.

For each of these selected locations, a feature vector was sampled from the image.

For instance, a simple version of the system might use the values of the three color

channels as the feature vector for this pixel. We compare the relative performance of

a number of different representations below, and illustrate their performance on real

scenes.

Classifiers for each object were trained in a one-vs-all manner, where, for class

A the positive examples from every class except A were used as negative training

data. This choice was made because of purity concerns similar to those we had for

the positive data. Boosting was used as the statistical learning machine of choice,

but linear-kernel SVMs performed equally well empirically.

In our experiments we report two systems relying upon the standard model fea-

tures. The first system uses a 32 dimensional vector of C1 features (8 bands times 4

orientations). The second system uses a representation consisting of 444 C2 features.

In order to better describe the process of collecting the training and testing data,

let us describe the process of extracting one texture example in the C1 representation.

As described above, each sample is associated with a particular image and a particular

location within that image. In order to build data for the C1 system this image was

first processed as in Sec. 3.1, resulting in a set of images, one for each orientation and

scale-band. A vector is then extracted by interpolating a value from each such image

at the same relative location, resulting in one value for each scale and orientation.
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To collect C2 values, we continue processing as described in Sec. 3.1, up to and

including the S2 layer. If we were then to take a maximum over the full S2 pyramid for

each patch, then each location in the image would have the exact same representation.

We would like instead a representation in which local information is preserved. Thus,

a variant of C2 is used in which S2 values are maximized only locally in scale-space.

The version we use here uses a maximum response over all scale bands, but only a 15

pixel wide maximization window in the spatial dimensions. The effect is similar to

having cropped out a small region of the texture object, and allowing responses only

from completely within the crop. This is similar to the C2 system for shape-based

objects, as described in Sec. 3.3.2.

The C2 implementation we used employed 111 features each from four possible

patch sizes, resulting in a total of 444 features per pixel. The associated prototypes

were extracted from random locations in the training image database. Since the

boosting classifiers we use only reference one feature per weak learner, and, in general,

boosting classifiers were terminated after 300 rounds of boosting, all classifiers did

not use the full list of features.

3.4.2 Measures of Performance

The first 300 StreetScenes images were set aside for training and testing the system

and benchmark systems. Again we used the pixel-wise object detection measure

described in Sec. 2.3. These images were randomly assigned to either training or

testing, and, as far as possible2, 10 extraction locations were selected from each

image for each object, resulting in nearly 3, 000 points for each object type. Using the

methods described above, texture samples were extracted from the database, boosting

classifiers were trained, and the results of testing these classifiers are displayed below

in figure 3-8, along with the results of a number of baseline texture representations,

described below. Subjective results showing the operation of these classifiers are

displayed in figure 3-10, and an enhancement using segmentation is described in

section 3.4.4.

2Some images do not contain pure examples of the target object type.
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C1
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HoE
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T2
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Road vs. Other Sky vs. Other

AUC EER TP@FP1.0% TP@FP0.1% EER AUC TP@FP1.0% TP@FP0.1%

SMFC2 96.8 7.9 79.1 30.0 98.9 3.8 91.5 54.0

SMFC1 93.0 13.7 37.0 4.8 93.7 13.4 70.2 31.7

Blobworld 74.1 32.3 1.4 0.1 78.1 25.9 2.3 0.1

Texton1 86.5 21.3 18.8 4.9 92.1 15.9 53.5 1.7

Texton2 88.5 17.7 23.6 6.9 93.9 14.7 52.9 29.4

EdgeHist. 88.2 17.5 8.1 1.0 77.5 30.1 29.2 20.9

Figure 3-8: ROC curves measuring performance on a pixel-wise object detection
task. Four binary texture classification problems are illustrated, using five different
texture classification algorithms. The SMF based texture representations dominate
the baseline algorithms.

In Fig. 3-8 we compare the results of the SMF texture-based object detectors

against four other texture classification systems. The “Blobworld” system is con-

structed using the Blobworld features described in [23]. Briefly, the Blobworld feature

is an eight dimensional vector at each pixel; 3 dimensions encode the color in the well-

known Lab color space, 3 dimensions encode the texture using the local spectrum of

gradient responses. The final two dimensions encode the (x, y) positions of the pixel.

In order to be fair, the color and position information was removed from blobworld.

Later we will display some results exploring the role of color and position informa-

tion in the texture object detection problem. For this first experiment, however, we
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concentrate our attention on texture alone.

The curves labeled “Texton 1” and “Texton 2” are are the results of a system

based on [90]. The Texton feature is extracted by first processing the test image

with a number of predefined filters and taking the absolute value. Texton 1 uses 36

oriented edge filters arranged in 5◦ increments from 0◦ to 180◦. Texton 2 follows [90]

exactly by using 36 gabor wavelet filters at 6 orientations and 3 scales. For both of

these systems independently, a large number of random samples of the 36 dimensional

edge response images are taken and subsequently clustered using k-means to find 100

cluster centroids. Each of these centroids is called a ’texton.’ The ’Texton image’ is

calculated by finding the index of the nearest (in an L2 sense) Texton for each pixel

in the filter response images. The feature vector used for learning the texture-based

object model is built by calculating the local 10×10 histogram of Texton values. The

Texton feature is thus 100 dimensional, one dimension for each histogram bin.

Finally, the “Histogram of Edges” system is built by simply using the same type

of histogram framework, but over the 36 dimensional directional edge response of

“Texton 1” rather than the Texton identity. Therefore, each feature in the histogram

of edges feature is a sum of the local filter response. This ca not be reduced into

linear operation, however, due to the intervening absolute value. Learning for each

of these features is done with 300 rounds of boosting over regression stumps.

From Fig. 3-8 we see that, while different methods have particular strengths for

some objects, the SMF based texture system has superior performance on every object

class. Changing the type of classifier from boosting to SVM does not change the

order of the performances. Performing the test in a multi-class framework results in

a correct-detection rate of 88%, where the baseline performance for random guessing

would be 25%.

3.4.3 Color and Position for pixel-wise detection

With the regular structure of the StreetScenes, sky at the top, roads at the bottom,

it is no surprise that position information can help in the classification task. Color

information is also very helpful, as to be expected. To demonstrate, we have per-

74



formed a test identical to the one described above, but the feature vectors for each

point were appended with either additional data representing the color in Lab space,

or the (x, y) position of the pixel, or both. Figure 3-9 illustrates the results of these

experiments. In order to avoid clutter, color and position are shown in combination

with either the blobworld features or the C2 features.

It can be seen that the relative utility of color and position information depends

on the object type. Color is an especially important cue for detecting trees in these

images, as can be imagined, since there are so few other objects which share their color

space. For the road class, color is important, but not as important as the position

feature. It should be noted that all classes benefitted by access to the C2 texture

features, more so than the other available texture features. The addition of color and

position features improved the detection in multi-class score from 88% to 93%.

The fact that different features are important for different types of objects is a

somewhat intuitively obvious, but yet important lesson. We will explore methods of

intelligently combining feature modalities further in chapter 6.

3.4.4 Detection in Full Images

In order to detect the texture object categories in full StreetScene images, we simply

apply the learned classifier to each location within the image. In the middle column

of figure 3-10 we see the results of this process, where each pixel has been tinted the

color corresponding to the object classifier that fired with the most confidence (brown

for buildings, blue for sky, green for trees and gray for roads). As can be seen, the

classifiers seem to be able to detect their preferred stimuli, but the results are rough

and anomalous responses are common at the borders between two texture objects.

One way to address these problems is to segment the input image (in the original

space), and then smooth the classifier responses over each segment.

We used the publicly available image segmentation software “Edison” [25]. Within

each contiguous segment, the results of each classifier were averaged. The assignment

of pixels to object classes then proceeds as above, the results of which are shown in

the right most column of figure 3-10. While the results are subjectively much more
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BW
BW + Pos
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BW + Lab + Pos
C2 + Lab + Pos

Building vs. Other Tree vs. Other

AUC EER TP@FP1.0% TP@FP0.1% AUC EER TP@FP1.0% TP@FP0.1%

BW 70.7 33.9 24.5 1.8 80.4 2.7 2.9 0.1

BW+Lab 81.9 23.2 14.7 9.7 97.4 7.7 51.2 8.8

BW+Pos 79.4 26.8 5.5 1.5 87.0 20.0 7.8 2.1

BW+Lab+Pos 92.1 2.5 93.2 68.2 97.3 6.6 54.5 5.5

C2+Lab+Pos 95.8 9.9 63.6 29.2 98.3 4.6 72.5 12.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Pixel−wise Road Detection

 

 

BW
BW + Pos
BW + Lab
BW + Lab + Pos
C2 + Lab + Pos

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Pixel−wise Sky Detection

 

 

BW
BW + Pos
BW + Lab
BW + Lab + Pos
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Road vs. Other Sky vs. Other

AUC EER TP@FP1.0% TP@FP0.1% AUC EER TP@FP1.0% TP@FP0.1%

BW 74.1 32.2 2.3 0.1 78.1 25.9 2.3 0.1

BW+Lab 92.6 15.0 37.1 1.8 98.9 4.8 72.6 30.0

BW+Pos 99.4 3.4 82.2 45.0 95.7 11.1 44.3 14.0

BW+Lab+Pos 99.7 2.5 93.2 68.2 98.8 3.4 91.5 53.9

C2+Lab+Pos 99.8 1.9 96.9 81.5 99.6 1.9 96.2 81.0

Figure 3-9: ROC curves, similar to those in figure 3-8, measuring performance on a pixel-
wise object detection task. Here we focus on the effect of color and position on the discrim-
inibility of the texture classes. Note that only the low false positive region is shown

here, up to FP = 1%. The addition of color (Lab) and position (Pos.) features alongside
the texture information provides the classifiers with better cues and improves performance,
but not identically across object classes. BW indicates blobworld texture features, and C2

indicates the standard model features described above. It seems that the Pos. features are
important for roads and skies, but not for trees and buildings. Also, Lab features are helpful
for skies and trees, but less so for buildings and roads. C2 texture features are very helpful
for buildings and skies, but not much better than BW features for the other classes, once
Lab. and Pos. are taken into account.
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appealing, the smoothing over segments was not found to reliably improve system

performance, measured pixel-wise. One thing we would like to try is to weight the

responses nearer to the center of the segment stronger than those responses closer to

the edge, so as to remove the anomalous texture responses due to the border of the

two objects.

3.5 Discussion

The system described in this chapter was designed to detect multiple object types in

natural scenes. It was shown that the crop-wise discriminative classification of shape

based objects is performed most accurately using the Standard Model C1 features,

while the detection of the texture-based objects, using a pixel-wise detection measure,

was performed performed most accurately with the C2 features. These two systems

were compared with several baseline systems from the literature, including several

which have shown state-of-the art performance in other databases.

We also have demonstrated that the standard model features, designed as a bi-

ological model, are very capable of strong performance in this scene understanding

task. More than just support for the model, this suggests that computer vision should

continue to take some inspiration from what is known of the biological system. At

the same time, the types of processing done with the features, boosting and so on, is

biologically implausible.

Whereas we use a discriminative approach to scene-understanding, through the

detection of these objects, the system proposed by [109] detects objects, and their

relationships to scenes, through a generative model. This model is capable of automat-

ically learning objects, parts of these objects, and relationships between objects. The

system is impressive in its structure and training methodology, but it appears, at least

superficially and for the time being, that the discriminative system described here is

more accurate. We look forward to more direct comparison in the future through the

creation of public databases and measures like the StreetScenes database.

One more difference between this system and that described in [109] is that our
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Figure 3-10: An illustration of the detection of four texture objects (buildings, trees,
roads and skies) in four sample StreetScenes images. Left : Original Image. Middle:
Texture object detection using local Color, Position, and the C2 features. Color indi-
cates the assigned label (brown, green, gray, and blue, respectively). Right : The same
results after smoothing over segmentation. Again, these results are nearly impossible
to interpret without a color display.
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system does not make use of context, i.e., it there is no way for objects influence

the detection of other objects. In [109] objects may influence the detections of oth-

ers probabilistically through the generative model. A contextual system for object

detection in StreetScenes images is described in the next chapter.
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Chapter 4

Contextual Modulation

In this chapter we will describe a simple feed-forward context feature and demonstrate

its effectiveness across a variety of object types. By coupling a detector for each such

object’s appearance with a detector for that same object’s context, we will support

previous studies [115, 22] which show that, for at least the objects tested in our

street-scenes database, context does aid in detection performance, especially when

the appearance information is weak.

Using this model, we will explore some relevant issues regarding context. For

instance, In Sec. 4.2.3 we address whether low-level context (derived from visual

early features like wavelet values) is as powerful as high-level context (derived from

semantic information like the presence of other objects). Previous systems have used

one or the other, but this is the first direct comparison of the two.

The implications of this research question may be far reaching. If little or no

benefit is gained by designing a system based on high level information, then context is

nothing more than an additional classification feature, perhaps with a larger receptive

field, and can be computed in a feed forward manner. If, instead, context is heavily

dependant on high level information, then robust context-enabled object detection

systems may be limited to computation structures involving some form of feedback.

We will also show that the utility of context information is related to the difficulty

of the detection problem. If it is very difficult to discern the target object from the

background, perhaps due to occlusion or low resolution images, then visual context
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can be very helpful, but when the target object is unambiguously visible, then the

context is only marginally useful, suggesting that the context information is highly

redundant to the appearance information.

Note that, regarding these investigations, we make several assumptions. Firstly,

in the experimental investigation, all tests use our StreetScenes database, and the

utility of context is measured via improved detection of the shape-based objects in

this database. It is likely that objects in other scenarios will have similar contex-

tual relationships. Furthermore, all studies are performed using the same general

framework for the contextual feature. The context feature captures semantic and/or

low-level visual information sampled in a pre-determined spatial pattern. This feature

is very similar in style to features which have been successful for describing object

appearances for detection algorithms, and is an obvious extension thereof. All claims

we make about context can only be supported in so far that this feature captures well

the available context information. If there is pertinent, computable context informa-

tion which this feature does not express to the subsequent learning machine, then the

results of these experiments do not adequately answer our stated inquiries into the

nature of context. It is hoped that this work will serve to tie together some of the

disparate notions of context and serve as a resource to those who are interested in

perhaps adding contextual level understanding to an object detection system.

4.1 A Feed-Forward Context Feature

Our system eschews complex models in lieu of a fast, simple, feed-forward classifier.

We favor the discriminative approach to the learning problem, and as such are com-

pelled to learn both relative and absolute geometric models in such a framework, as

both are important to the context problem. For instance, we expect skies near the

top of the image1, but we expect cars to be above roads2, no matter where the road

appears. We show that there is an easy solution in using the right type of features.

1An example of the utility of global position information
2an example of the utility of relative position information
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The construction of the context feature is best understood as a two stage process.

In the first stage, the low level and semantic information is built. In the second stage,

the context feature is constructed at each point by collecting samples of the previously

computed features at pre-defined relative positions. This process is described in detail

below.

4.1.1 Computing Low Level Image Features

To produce low-level “early” visual features, we first downsize the input image to 60×

80 pixels and compute color and texture spaces as in Blobworld [23]. This resolution

was selected as it was large enough to capture well the gross pattern of texture-

objects (buildings, trees, roads, etc.), but small enough to work with computationally.

Blobworld returns a new image represented with six layers of information, three for

color, and three for texture. The color space used is the well documented CIE LAB

space. LAB color is designed to model color dissimilarity as seen by humans as

euclidian distance in the color space. The texture layers capture information about the

local structure of the brightness gradient. The first texture feature is referred to as the

polarity, and measures the likelihood of the local image gradient to switch direction.

In a sense it discriminates between boundaries of brightness and distributed textures.

The second feature is the anisotropy, which is roughly a measure of the relative

strength of the gradient in orthogonal directions. Locations with large anisotropy

have oriented energy in several directions, whereas locations with low anisotropy are

limited to straight edges or parallel structures. The third texture feature is the texture

contrast, which can be seen as a way to measure the roughness or harshness of the

region, or how strongly the local brightness is changing.

In addition to the 6 color and texture features, we also include 10 features to

represent the global position. These position features are calculated at each pixel

pi = (xi, yi) by recording the L2 distance from pi to a set of 10 predefined locations

Z ≡ {(xj, yj)|j = 1..10}. These locations Z are roughly evenly distributed over the

image. This representation was chosen in order to make it possible for a classifier,

even a simple linear one, to learn a wide variety of global position priors. For instance,
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were just the x and y values recorded in the feature, it would be impossible for a linear

classifier to prefer points near the center of the image over points near the borders.

4.1.2 Semantic Image Features

In order to investigate the importance of high-level features in constructing context

cues, we include several semantic image features. For our task of detecting cars,

pedestrians, and bicycles, we add four semantic layers indicating the presence of

buildings, trees, roads, and skies. For instance, in the building feature, a pixel with a

value of 1 indicates that this pixel is over a building, and a value of 0 indicates that it

is not. Because of coarse labeling and ambiguous border cases, a pixel may be given

multiple labels, i.e., it may be both building and tree, or it may have a null label.

The ground truth for these four layers is available from the hand labeled StreetScenes

images, as described in chapter 2 and illustrated in appendix A.

Since the ground truth semantic information is not available in test images, four

binary support vector machine (SVM) classifiers were trained to automatically detect

these categories. These classifiers were trained in the pixel-wise manner described in

the previous chapter, but using the blobworld (including color) and position features

described above, as opposed to the StandardModel features or other features described

in Sec. 3.4. The training set for these classifiers consisted of 10, 000 samples per

object category, and was extracted from 100 training images. Generating the semantic

features for a novel test image involves first computing the low-level feature image,

and then feeding this data into the four SVMs. See Fig. 4-1 for learned semantic

labeling. Measures of the performance of these four classifiers are available in Fig. 4-

3.

4.1.3 Building the context feature

At this point, the original image has been converted into an image with 20 layers of

information. Each pixel pi is labeled with 4 binary semantic features, 3 color features,

3 texture features, and 10 global position features. However, the context feature for
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Source True Semantic Label Empirical Semantic Label Learned Context

Street Scene
Building Tree Building Tree Car Pedestrian
Road Sky Road Sky Bicycle

Figure 4-1: Column 1: Test images from the StreetScenes database. Column 2: True hand-
labeled semantic data for the building, tree, road, and sky class. Column 3: Automatically
classified semantic data. (Locations with larger positive distance from hyperplane shown
brighter). Column 4: Learned context images for the three object classes: car, pedestrian,
and bicycle. Brighter regions indicate that the context more strongly suggests objects
presence.

pi must hold information representing not only the immediate proximity, but also

the larger neighborhood. This information is captured by sampling the image at

40 predetermined relative locations, as shown in Fig. 4-2. The relative positions

are arranged in a quasi-log-polar fashion so as to sample the local neighborhood

more densely than distant regions. This is similar to biological systems, such as the

mammalian retina, and several computer vision systems, e.g., [5]. Specifically, data

is sampled at 5 radii of 3, 5, 10, 15, and 20 pixels, and at 8 orientations. These 40

samples are concatenated to generate an 800 dimensional context feature vector for

each pixel. Note that the 20 dimensional image is smoothed first by averaging over a
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Figure 4-2: An illustration of the 40 relative pooling locations, plotted as blue ’+’ signs,
relative to the red ◦ . The thin black rectangle represents the average size of the cars in the
database, and the thick black rectangle represents the average size of pedestrians.

5× 5 window.

While it may seem that computing semantic-level information from the low-level

information, and then including both is an exercise in redundancy, we should point

out that this is not the case. Reductio ad absurdum, this argument would support

the claim that one should only include the original pixel-level information, since all

visual features can be computed directly from these. Since the automatically learning

of appropriate data representations is still an unsolved problem, it makes sense to

include all useful representations of the input. Greater attention to the problem of

how to make use of multimodal data will be given in chapter 6.

4.2 Experiments and Results

We will compare the detection ability of our context detector to that of an appearance

based detector. Afterwards, we will show that the two can work together to achieve

levels of performance that neither classifier is capable of alone.

4.2.1 Fidelity of Semantic Information

Four SVMs were trained to discriminate between positive and negative examples of

the four classes: building, tree, road, and sky in order to provide semantic information
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Figure 4-3: ROC curves for the four semantic classifiers; building, tree, road, and sky.
These curves are a bit lower than those in Ch. 3 because they are not using the C2 texture
features. The advantage is that the computation is faster. It will be shown that these
classifiers are good enough to be of semantic use to the shape based object detectors.

to the classifiers. The features used to learn these classes are the color, texture, and

global position information described in Sec. 4.1.1. By splitting the training data and

using cross validation, we obtain the ROC curves illustrated in Fig. 4-3. A similar

one versus all approach to that used in Sec. 3.4 is used. While the learned semantic

classifiers are not perfect, they are operating at a level much better than chance.

4.2.2 Performance of the context detector

Once the 100 images selected for the training of the semantic classifiers are removed,

3, 447 labeled images remain in the StreetScenes database. This corpus is split evenly

into context-training and context-testing sets. To learn a model of object context,

it is necessary to collect a database of samples of positive and negative context.

One sample of positive context is taken per labeled target object in the training

database. For instance, for each labeled car example in the training database, one

800 dimensional sample of positive context is extracted at the approximate center of

the car. Additionally, ten times as many locations of negative context are recorded

from locations at least 7 pixels away from our target object (in the downsized 60×80
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pixel image).

Models of context are built by training a boosting classifier, and the performance

is evaluated pixel-wise on the testing data. The results are plotted in Fig. 4-4. For

comparison, we include results for a similar context detection system where the SVM-

estimated semantic features have been replaced with true hand-labeled semantic fea-

tures (in both training and testing situations). We also include results for a detector

of object appearance trained from the same object examples. A description of the

structure of this appearance detector is available at the end of this section.

By comparing the ROC curves, it can be seen that the advantage of having true

semantic information, as opposed to the empirical semantic information output from

the classifiers, is negligible. The appearance detector in general outperforms the

context detector, although in the very high detection rate region the context-detectors

are performing slightly better. This might be of use in a classifier cascade situation,

where it is important to not remove true positives. To surmise, however, from these

plots that the appearance detector is better than the context detector is wrong for

the following reason: the measure used here is a measure for object detection, not

object context detection. If, for instance, the context detector responds strongly to

pedestrian context over a crosswalk, a location likely to have pedestrians, and there

are in fact no pedestrians in the test image, then by this measure the context detector

has performed poorly, i.e., a false positive. The proper way to measure the context

performance is to quantify how much aid is given to subsequent stages in the detection

process. This is studied in Sec. 4.2.4.

The Appearance Detector The appearance detectors for the three object

classes are all constructed via linear kernel SVMs. Training examples for these classi-

fiers were selected from the StreetScenes data using the same methodology as for the

context detector, as described in Sec. 4.2.2. In brief, positive and negative samples

of object appearance are extracted from the training images by selecting appropriate

locations and sizes. For each training example, the minimum square bounding box

of the object is calculated, and widened by a factor of 1
6
on all sides. This bounding

box is cropped from the image, converted to gray-scale, and resized to exactly 64×64
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pixels. The resulting image is linearly filtered with 6 filters: four 3 × 3 Sobel filters

at 45◦ intervals, one 3 × 3 Laplacian filter, and one identity filter. After taking the

absolute value of the result, each result except the identity filter is submitted to the

morphological gray-scale dilation operation using the 8-neighbor model of connectiv-

ity and a radius of 5 pixels. Finally, the images are downsampled to 16 × 16 using

bilinear filtering. The resulting 1, 536 dimensional data (6× 16× 16) is used to train

the SVM. In a windowing framework it is possible to filter and dilate the whole image

before the actual windowing step, so as to save computation time. This quick, crude

approximation to the Standard Model C1 feature has been shown to achieve nearly

equal levels of performance while requiring much less computation.

4.2.3 Relative Importance of Context Features

Previous systems employing context to aid in the object detection task have used

either low-level image statistics or high-level object detections as their contextual

clues. In this experiment we wish to answer whether the features input to our context

classifier need to be of high level, or if, instead, the low level information is sufficient.

We train four context classifiers using the system outlined above in Sec. 4.1, the

only difference between the four being the subset of the context features used. Classi-

fier ’A’ uses only global position information and nothing else, classifier ’B’ uses only

semantic information and nothing else, classifier ’C’ uses only color and texture infor-

mation and nothing else, and finally classifier ’D’ uses both color-texture features and

semantic features, but no position information. The ROC curves of these classifiers

are illustrated in Fig. 4-5 using the same measure as the previous experiment. We see

from the figure that the position based classifier performs much better than chance,

even though position information is identical in every test image. This performance

is to be expected since most cars and pedestrians are near the bottom half of the im-

age; the distribution is not uniform. The position-only-classifier can be considered to

be calculating a sort of discriminative object prior for position. We see also that the

semantic-information based classifier performs at about the same level as the position

detector, even though this detector is not privy to the position information. We are
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Figure 4-4: ROC curves for car, pedestrian and bicycle detection using (solid red): con-
text with estimated (learned) semantic features, (dotted red): context with hand-labeled
semantic features, and (solid blue): appearance. In the car example the two context curves
overlay each other, and are hard to discriminate. From these measures we see that the
appearance is a more reliable signal of object presence than the context.

surprised, however, to see that the low-level-feature based detector performs better

than either of these. It was presumed that information about the relative positions

of large objects within the image would be the best cue as to the likely location of

the target objects. This result would be of definite interest to practitioners, who

may invest a great deal of time into complicated contextual classifiers and may be

disappointed by the benefit over simpler methods.

Also of note is that the classifier which uses both semantic features and color-

texture features does only marginally better than the classifier which uses only color-
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Figure 4-5: Different modes of contextual features have different utility to the detector. In
all cases the low-level color and texture were the strongest cues. The performance of the
system when using only semantic features is approximately equal to the performance when
using only global position within the image.

texture features. This suggests that almost all the relevant information available from

these semantic features is also immediately available from the color-texture features.

Results are not improved by using the true semantic information in place of the

empirical semantic information.

One might notice that the system samples contextual information from some loca-

tions which may overlap the target object. It is possible that what is being learned is

less a model of context and something more akin to a model of appearance. This would

explain why the low level image description appears to be more influential than the

high level information. In order to test this hypothesis, an experiment is performed
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Figure 4-6: The quality of a detector of object context depends not only on the mode of
features used, but also on the distance from which these features were sampled. For each
object, context classifiers were trained and tested using either high or low-level features at
d ∈ {3, 5, 10, 15, 20}. Each bar in this graph illustrates an area under an ROC curve of such
a detector. As features are sampled from further away, the high-level information becomes
more important than the low-level information.

illuminating the relationship between the importance of a feature mode and its dis-

tance d from the point of interest. In this experiment, for each d ∈ {3, 5, 10, 15, 20},

a classifier is trained with only low-level or high-level features from exactly distance

d. No global position is included. Recall that the full image resolution at this stage

is only 60 × 80, so these distances represent a wide receptive field. The results of

this experiment are illustrated in Fig. 4-6. Plotting the area under the ROC curve

for these classifiers illustrates that for all three objects tested, as one takes relative

locations further and further from the target object, the semantic features become

more important than the color and texture features. However, the low-level features

retain much of their discriminative power even at great distances from the target

object. Paraphrased, knowing the color and texture information at a few points very

distant from a point of interest is about equally useful as knowing whether those same

distant points have skies, buildings, trees or road, at least for the task of deciding

whether the point of interest is likely to have a car, pedestrian, or bicycle.

The impact of these studies is pertinent to anyone implementing a contextual

system to aid in the detection of objects. If early visual features can be used in

place of high-level semantic information, then tremendous time can be saved by not

labeling data and training classifiers to detect the neighboring objects. Instead, all

the relevant information is already available with simple image transformations and

a larger receptive field.
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Figure 4-7: A data flow diagram of a rejection cascade combining both context and ap-
pearance information. Inputs are classified as positive only if they pass both classifiers. By
tuning the confidence thresholds THC and THA, different points are achieved in the ROC
plane.
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Figure 4-8: Area under the ROC curve of the rejection-cascade as a function of THC . The
dotted lines appear where the curves intersect the line x = 0, signifying the performance
level without any contextual assistance (THC = −∞).

4.2.4 Improving object detection with context

In this final experiment it is demonstrated that context can be used to improve

system performance. The architecture we will use is the rejection cascade illustrated

in Fig. 4-7. In order to detect objects in a test image, the context based detector is

applied first. All pixels classified as object-context with confidence greater than the

confidence threshold THC are then passed to the appearance detector for a secondary

classification. A pixel is judged to be an object detection only if the pixel passes both

detectors. The context confidence threshold which maximizes the area under the

ROC curve of the complete system is selected empirically using a validation set of

200 images. Fig. 4-8 illustrates the effect that the THC has on the performance of

the detector cascade for three different objects. On the far left, THC = 0 corresponds
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Figure 4-9: The car rejection cascade incorporating both context and appearance informa-
tion outperforms the system using appearance alone. The level of improvement is, however,
minimal. In this case it is hard to justify the additional complexity of the additional con-
textual analyzing unit by the additional performance levels of these detectors alone.

to not using context at all. At some point, as the threshold gets higher, the context

classifier is rejecting too much and the performance drops due to false negatives.

Somewhere between 0 and this level is where the context classifier can offer maximum

assistance for this task.

ROCs of full system performance are illustrated in Fig. 4-9. These curves suggest

that using context as a preliminary filter for an appearance detector may be a valid

strategy, but, at least in this case the performance gain is marginal. The reason why

the context cue was of so little assistance in this experiment can be understood by

inspecting the distribution of the data. In Fig. 4-10 we plot the car examples in the
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Figure 4-10: Empirical distribution of the car data in the appearance-context plane. Pos-
itive points are black ’+’ signs, negative points are the pink ’◦’ signs. Selected thresholds
for the context and appearance detectors are shown as solid and dashed lines, respectively.
Note that few points are simultaneously strong in appearance but weak in context.

plane where the x axis is the empirical appearance score, and the y axis is the empirical

context score. A system trained to discriminate based on appearance alone would

classify examples by setting some threshold along the appearance axis. In Fig. 4-10

the appearance classification boundary is illustrated with the vertical dashed line.

The boundary for the context classifier is illustrated similarly as the solid horizontal

line. Points which are classified positively by both systems lie in the upper-right

quadrant of the diagram. The context classifier aids the system by rejecting negatives

which are strong in appearance but weak in context, e.g., the negative points in the

lower right quadrant. The important point to notice is that the distribution is curved

such that these points are very rare. There are few samples, positive or negative,

which appear like the target object and are simultaneously out of context. It is for

this reason that the context cue did not give much performance gain. A superior

appearance-based detector would achieve better horizontal separation of the positive

and negative points, further marginalizing the importance of context. We attempted

to use several other models of classifier combination, including training a linear model,

but results were similar. Note that if boosting is used on the appearance and context

together, concatenated into one feature vector, then the classification performance

is even worse than just using appearance information alone, suggesting that in this
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scenario the appearance information is much more relevant to the detection problem.

Further support of this thesis can be seen from the results published in [115],

where for the three target objects computer mouse, keyboard, and monitor, the con-

text is marginally helpful for the detection of the monitor, somewhat helpful for the

keyboard, and very helpful for the detection of the mouse. Since the mouse is phys-

ically small it is difficult to detect without the contextual cues, but the monitor is

visually unambiguous. For our application, there is very little appearance ambiguity

similar to the monitor case.

4.3 Summary and Conclusions

The context system described in this work is simple enough for others to use in their

own work and general enough to function across several object types. Experimental

results demonstrate effective context detection for cars, pedestrians, and bicycles, and

furthermore show that these context detections can be used in a rejection cascade

architecture to improve detection accuracy. Our system’s feed-forward design makes

it possible to determine a map of object context at a resolution of 60 × 80 in under

10 seconds using a standard desktop computer.

It is commonly assumed that contextual cues can do much to improve the accuracy

of an object detection system by eliminating false positives that fall out of context.

We have demonstrated that visual phenomena which bear strong visual resemblance

to the target object while simultaneously being out of context may be very rare, and

in this case the benefit to be gained by such a combination is marginal. Instead,

we propose that context is a useful cue for robust object detection only when the

appearance information is weak, such as in critically low-resolution or very noisy

images. In retrospect, it should not be surprising that context is useful in some

situations and not useful in others. In this light, support for our context classifier

could be made greater by building an experiment wherein the appearance data for

the target objects have been in some way corrupted at the image level, e.g., through

blurring or some local nonlinear filter.
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Our investigation into the relative importance of different modalities of context

features is the first of its kind. Common wisdom suggests that context must be

computed at a high level by inferring likely target object locations from the locations

of other related objects in the scene, but our experiments show that accurate context

can be determined from the low-level early visual features both near and far from the

location of interest. It is hoped that other practitioners will take note and attempt

simple contextual methods before building detectors for related objects.
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Chapter 5

Extending StreetScenes: Novel

Gestalt Image Features

5.1 Introduction

Computational approaches to perceptional tasks, visual and otherwise, can be divided

into two major components: representation of the input signal, and learning, e.g.,

optimization, modeling, or estimation. Generally, the current systems exhibiting the

highest levels of performance use standard learning techniques. The key to their

effectiveness is either a very large training set, or an effective signal representation.

For visual problems, a wealth of image representations have been proposed in

the literature. But, as mentioned in the literature review in Ch. 1, there has been

rapid convergence into a few selected approaches. The representation of the image

as a collection of gray value patch similarities or as a collection of edge orientation

statistics are perhaps the most common. It is clear that these representations do not

explicitly capture more intricate concepts, such as line continuity across long regions,

which may be critical to the subsequent learning stages. Furthermore, the types

of standard learning techniques commonly used for this sort of object recognition

problem are unable to automatically generate these higher level information sources.

Our goal is to implement mid-level image representations based on Gestalt prin-

ciples [2]. If these new representations make explicit visual signatures which discrim-
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inate between examples of object and non-object, then we can expect system-wide

performance gains. This performance constraint is critical; the literature has many

examples of symmetry detectors, saliency detectors and other mid-level features ??,

however, few have been shown to add to the discriminative power of a state-of-the-

art detection system. The task of creating Gestalt-based features that improve upon

cutting-edge descriptors remains mostly unexplored.

Computationally, the implementation of these new features resembles the gener-

alized Hough transform, but there are many significant differences, such as replacing

summations with morphological operations. The importance of these non-linearities

will be demonstrated experimentally. Also, in the classical generalized Hough trans-

form, thresholding is used to detect salient image structures. Instead, we pass a

reduced version of the voting space directly to the classifier. This design methodol-

ogy will be elaborated as the paper progresses.

In Sections 5.2 through 5.5, we describe and evaluate new image descriptors based

on the continuity, convex form, and parallelism Gestalt grouping principles, respec-

tively. Caltech 101-objects database performance is demonstrated in Sec. 5.6. We

then delve further into the properties of these types of features with explorations in

parameter tuning and randomly generated features.

5.2 Continuity based image descriptors

The detection of continuous edges has long been a focus of the vision community,

having been a topic of discussion in studies of saliency, segmentation, and boundary

detection, etc., e.g., [102, 56]. Even the venerable Canny edge detection system [21]

presupposes a notion of continuity to justify the use of two different thresholds and a

hysteresis based detection scheme. While many modern object detection systems use

edge gradients as feature vector elements, few have explicit encoding of the presence

or absence of long continuous edges. We will show that classifier performance can

be improved over and above the levels achievable using state of the art histogram-of-

edges features.
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Given an input image I, apply the following procedure:

For each orientation θ, repeat steps 1-4 below:
1. Image rotation: Rotate the image by an angle of θ. ©θ

2. Initial filter: Take the absolute derivative of I in the x direction. |Ix(x, y)|
3. Perform the following sequence of morphological operators on Ix:

a. Local minimization with a kernel of length 7 in the x direction. ª(7, 1)
b. Local maximization with a kernel of size (x, y) = 7× 3. ⊕(7, 3)
c. Perform a 2× 2 subsampling. ↓ (2, 2)
d. Record the current continuity data. R(x, y, θ, λ)
f. Increment λ.
f. Return to 3a unless the data is less than 7 pixels wide.

4. Bilinearly resize R to an appropriate size. ⇓ R

Figure 5-1: Pseudocode for the Continuity descriptor. In the real implementation the
filters and not the image are rotated. The resulting description is parameterized by image
locations x, y as well as orientation θ and line length λ.

The traditional approach to detecting continuous lines in an image is to use the

Hough transform. First, gradient magnitudes are computed and thresholded at each

pixel location, creating a set of edge-candidates. Each candidate is then mapped

into the space of parameters of all lines which pass through the image. Traditionally

the two dimensional parameter space (r, θ) is used, where θ is the slope of the line,

and r is the distance from the line to some predetermined point in the image. Since

each edge element could potentially stem from many different lines, the elements are

allowed to cast many votes into the line-parameter space.

It would certainly be possible to then take the descretized parameter voting space,

and use it directly as an image feature. This is unsatisfactory for several reasons,

including the inability to represent lines of different lengths and the diffuse nature of

the information about the actual spatial location of the lines within the image plane.

For instance, a horizontal line in the top left may have the exact same representation

as a horizontal line in the bottom right. The feature we propose below aims to address

some of these issues.

5.2.1 The min-max continuity descriptor

In Fig. 5-1, we describe the algorithm used to calculate the image continuity features.

The computation consists of first filtering the image with oriented filters, rectifying
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Continuity Computation

Iterative Local Maximum

Figure 5-2: (This figure is meant to be viewed in color.): Top: An illustration of the conti-
nuity computation. After the original image, different colors indicate different orientations
of contours, red is vertical, etc. Deeper color saturation indicates stronger contour evidence.
Note that as the computation proceeds, the texture is filtered away and only the correct tint
of the long contour remains. Bottom: In contrast to the continuity detector, it is possible
to simply iteratively take local maximums in the orientation space. The result, as shown
here, is that all strong signals are spread out, no matter their local support. Since filters
at many orientations are stimulated by strong edges, the result is that all orientations are
strongly stimulated near the border of the bear.

the output, and then processing the result with rounds of local minimization, maxi-

mization, and decimation steps. Each round defines a discrete step in a scale space

of continuous edges, wherein representations of longer contours are constructed as

concatenations of smaller co-linear contours. The output is a feature vector in which

each element describes the maximum magnitude of all ridges of a certain minimum

length and orientation within a particular location in the image. After each itera-

tion of step 3, this minimum length increases and the location specificity decreases.

Intuitively, the minimum filter only gives a strong response if all edge elements in a

contour are strong, and the maximum filter propagates that signal to the neighbor-

hood. The wider maximum support is used to help detect straight edges which are

not precisely at the represented orientations, and edges which slowly curve. When
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the maximum support is longer than the minimum support, the feature becomes tol-

erant to small gaps in the contour at the cost of detecting more spurious contours in

textured regions.

The current MATLAB implementation of this feature costs approximately 3 sec-

onds per 128 × 128 pixel image, computing continuity in 18 orientations and at 6

scales. Since each orientation is computed independently, the cost is linear in the

number of orientations. The erosion and dilation steps are computed efficiently us-

ing a data rearrangement and maximum procedure, but still the computation cost

depends heavily on the size of the kernel used. The cost is linear in the area of the

image. This computational cost assessment, and all others in this chapter, are cal-

culated using a 2 GHz processor with 4 GB of memory running MATLAB version

7.1.0.183 (R14) in Unix.

For illustration, Fig. 5-2 depicts the continuity feature applied to an image of a

bear: different colors indicate different contour orientations. Note that long contin-

uous contours become enhanced and remain represented through gross image down-

sampling, while textured regions do not. The images in the bottom row indicated the

results of a simple iterated maximization, without the erosion step. It is easy to see

that the continuity detection process retains information about contour orientation,

maintaining strong levels only when the support indicates a long continuous edge,

while the local max process ends up simply spreading the strong gradient informa-

tion in a local neighborhood, independent of whether the peak gradient measurement

was part of a long contour, or rather a spike of noise in a textured region.

In morphology, image maximization and minimization are termed grayscale image

dilation and erosion [107]. The continuous contour iterative step is similar to the

morphological opening operation, except that the structuring elements are slightly

different for the erosion and the dilation phases, and that a decimation takes place

at the end of each iteration. Morphological operations have been studied for a long

time in computer vision, and their properties and efficient computation methods are

well known. Although the continuity operator is different from opening, we can use

morphological image analysis to help understand some properties of the algorithm.
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Property 1 (Noise Removal) In each iteration the continuity operator will remove

edge responses which do not maintain their strength for at least k successive pixels,

where k is the diameter of the minimizing structuring element.

Property 2 (Gap Tolerance) Consider a long contour with a gap of g pixels. If

the length of the contour is at least k on both sides of the gap, where k is the diameter

of the erosion structuring element, then the gap will not be larger after the min-max

iteration. If the contour is long enough, then the influence of the gap will diminish in

successive iterations due to the decimation phase.

5.2.2 Experimental validation

The utility of the continuity feature in object detection tasks is demonstrated in

three separate object detection experiments. In the first two, the performance of an

existing system is improved by simply adding the continuity features to the feature

pool available during the learning stage. The third, experiments on the Caltech 101

object database, is described in Sec. 5.6. The first experiment demonstrates improved

results in detecting cars, pedestrians, and bicycles in the StreetScenes database as

described in Ch. 3. The second experiment involves discriminating images which

contain an animal from those which do not, where the animal may be at any scale or

position within the image, and windowing is not used. Finally, improved results are

demonstrated on a three-class database consisting of low-resolution images of cars,

mid-size vehicles, and trucks.

Object detection with no clutter For this experiment, we use the StreetScenes

data set and the experimental methodology carried out in section 3.3.2, wherein the

three binary tasks are to discriminate between images of cars, pedestrians or bicycles,

and background in a crop-wise detection task. The objects in the positive data

are relatively standardized in terms of position and scale within the crops, and the

background class consists of image crops known not to contain any of these object

types. We should note that this is a difficult task owing to the large amount of
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internal class variability. For instance, the car data set includes vehicles of many

different types, from small coupes to large busses, and at many different poses, but

they are all labeled as only one class. Example images were shown in Ch. 3. The

data set is extracted from our StreetScenes database, as described in Ch. 2. Briefly,

it includes 3,547 images with 5,001 labeled cars, 1,449 labeled pedestrians, and 209

labeled bicycles, among other objects. In the experiments, the data was randomly

split into 2
3
for training and 1

3
for testing.

In chapter 3 it was shown that, for these three data sets, the C1 features outper-

form several other state-of-the-art feature sets, notably, the two systems described by

Torralba and Leibe in [115] and [66]. We therefore compare only to the C1 features

and to the similarly successful HoG feature set. As can be seen in table 5.1, the

baseline systems’ relative performance depends on the object.

Dataset Car Pedestrian Bicycle

measure EER tp@fp = .01 EER tp@fp = .01 EER tp@fp = .01

C1 5.62±1.1 81.73±4.1 18.41±2.2 32.83±6.1 8.57 ± 2.2 59.79±10.0
C1 + Cont 4.58±1.0 86.88±3.9 8.07±1.2 71.02±4.5 7.28±2.1 78.33±7.2
C1 + LinCont 4.87±1.0 86.72±4.0 10.14±1.7 56.33±6.4 8.51±2.3 66.31 ±8.0
C1 + Circ 4.68± 0.9 86.89±3.9 8.27±1.7 67.98±4.8 6.79 ± 2.1 79.36±5.5
C1 + LinCirc 4.92±1.0 85.55±3.8 9.79±1.3 61.90±5.8 8.27±2.2 68.26±9.9
C1 + Par 5.07±0.9 84.24±3.6 10.50±1.3 58.23±7.9 8.87±2.5 65.39±9.7
C1 + LinPar 4.87±1.0 86.72±4.0 10.14±1.7 56.33±6.4 8.51±2.4 66.31±8.0
C1 + Symm 4.92±0.9 86.01±3.4 9.00±1.5 57.05±5.2 6.37±1.9 76.52±9.0
C1 + All Four 3.6±0.7 90.9±2.6 4.8±1.0 85.2±3.2 6.2±2.6 84.7±6.7

HoG 8.62±1.1 61.36±6.7 9.81±1.5 62.62±6.5 12.14 ± 2.7 52.90±9.3
HoG + Cont. 6.93± 0.9 69.88±5.7 7.67±1.0 72.81±6.1 7.84±2.9 73.29±7.7
HoG + LinCont 6.69± 0.7 68.96±5.8 7.71±1.2 67.90±6.6 9.87 ± 3.2 65.44 ±10.7
HoG + Circ 5.82±1.1 75.11±4.7 6.66±1.4 76.84±5.1 6.99±1.8 76.14±8.1
HoG + LinCirc 7.06± 0.9 69.09±5.2 8.18±1.3 70.09±5.6 9.19±2.4 68.02±8.4
HoG + Par 6.78±1.0 73.83±5.7 7.49±1.5 71.75±5.8 9.87±3.2 65.44±10.7
HoG + LinPar 6.63±0.7 69.06±6.6 7.74±1.2 68.18±6.4 10.27±3.1 61.31 ±9.8
HoG + Symm 5.88±0.8 75.83±5.3 7.20±1.1 71.31±7.2 8.27±2.9 65.88±9.1
HoG + All Four 4.9± 0.9 81.9±4.4 6.4±1.2 79.4±4.3 6.4±1.9 79.0±7.9

Table 5.1: Object detection results for the Car, Pedestrian and Bicycle data sets
using the crop-wise detection measure outlined in section 5.2.2. Each row indicates
a feature-set. Each column lists ROC statistics in percentage: either equal-error-
rate or true-positive-rate when the false-positive-rate is set to 1%. All statistics were
generated by randomly splitting the data 25 times into training and testing sets. The
“+ all Four” data is the results of a classifier trained on the baseline (C1 or HoG),
plus Continuity, Circularity, Symmetry, and Parallelism features.

There is significant improvement in performance when the continuity features are

included in addition to the baseline features. In table 5.1 we list the performance

of these classifiers both with and without the additional continuity features. The

reported statistics were collected by randomly splitting the data into training and

testing 25 times, training gentleBoost classifiers [54] until convergence, applying it to
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Figure 5-3: Twelve examples of private car (top) vs. mid-size vehicle (middle) vs. truck
(bototm) images from the car database mentioned in Sec. 5.2.2. The task is difficult due to
the very low resolution of the data and some ambiguity in the class distinction.

the test data, and then recording statistics of the resulting ROC curve. We report the

equal-error rate and the true-positive-rate when the false-positive-rate = 1%, since

the low-false-positive region is the interesting part for the detection applications. It

can be seen that the continuity features have significantly improved the power of the

classifier.

Finally, to illustrate the necessity of the non-linear morphological operations in

the continuity operator, we include the results of a more traditional linear version

of the operator in the same table. This operator, instead of performing cycles of

erosion, dilation, and image decimation, simply filters the oriented edge responses

with analogous linear filters. It can be seen that this linear version helps the classifiers,

but not nearly as much as the algorithm described in Fig. 5-1.

Car type identification The car type data set consists of 480 images of private

cars, 248 of mid-sized vehicles (such as SUV’s), and 195 images of trucks. All are

20× 20 pixels, and were collected using an automatic car detector on a video stream

taken from the front window of a moving car. The task is to classify the three types of
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cars for a safety application. Taking into account the low resolution and the variability

in the three classes, this is a difficult task (see Fig. 5-3).

The protocol used in the experiments is as follows. In each one of 20 repeats,

100 training images and 95 testing images were randomly drawn from each class. A

multi-class SVM was trained, and the average success rate along with the standard

deviation was reported. The gray-level features score 59.86% ± 3.35% on this three

class problem, the C1 features score 41.89%±3.62% and the continuity features score

67.51% ± 2.92%. This success supports the postulation that classification is best

performed on this dataset by using long horizontal and vertical edges. We also tried

combining feature sets: gray-level combined with C1 scores 59.65% ± 4.24%, while

gray-level and continuity together scores the highest score among our experiments;

72.35%± 2.47%.

5.3 Circularity and Form based image descriptors

There is a well known result in studies the of statistics of natural images that, given the

location of one oriented edge, the most likely locations for another oriented edge are

those in which the two edges would have the property of cocircularity [42]. Similarly,

in studies of saliency, it is known that humans tend to group together edge elements

which form closed shapes such as circles or quadrilaterals [122]. In order to capture

the notion of form in an explicit image feature, we have developed the algorithm

detailed in Sec. 5.3.1. We will show that this mid-level image feature captures useful

information about the image which is not immediately available in other state-of-the-

art image representations.

5.3.1 The circle and form descriptor

In Figs. 5-4 and 5-5 we describe, in pseudo-code and diagrams, the algorithm used

to calculate the circle feature. Each element in the vector output by this algorithm

collects the evidence that there is a convex form (circle, rectangle or otherwise) of

an approximate scale r centered at an approximate (x, y) location in the image. The
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Given an input image I, apply the following procedure:

1. Initial filter: For each θ ∈ {0◦, 45◦, 90◦, 135◦}, Let D(x, y, θ) = |∇θ(I)|
2. Non-maximal suppression: if D(x, y, θ1) < D(x, y, θ2): set D(x, y, θ1) to 0
3. Initialize 4-D voting space to zero: H(x, y, θ, s) = 0
4. For each radius r ∈ {21, 21.5, 22, 22.5 . . . , 25} and orientation θ:

a. Define an elongated gaussian shaped voting kernel: G(θ,r)

of size 2r × 2r with a diagonal covariance matrix with values 3r and r.
b. Rotate: G(θ,r): by θ

c. Define the translation: tx = r × sin(θ) , ty = r × cos(θ)
d. Collect votes by convolving the voting kernel and translated filter response:

H(x,y, θ, r) = H(x,y, θ, r) + (G(θ,r) ~D(x− tx,y− ty, θ))

H(x,y, θ, r) = H(x,y, θ, r) + (G(θ,r) ~D(x + tx,y + ty, θ))

4. Maximal suppression:
if ∀θ2, H(x, y, θ1, r) ≥ H(x, y, θ2, r) then set H(x, y, θ1, r) to 0

5. Sum the voting matrix H over orientations
6. Reduce image resolution: using bilinear interpolation by a factor of 8

Figure 5-4: Algorithm to compute the circularity feature vector of an image.

algorithm presented here is in some ways similar to the generalized Hough transform

used to detect circles, though there are also distinct differences. In the usual frame-

work, boundary elements “vote” in a non-parametric way into the circle-parameter

space. Similarly, in our system, each edge element spreads its vote, modulated by

the edge magnitude, into data structure indexed by (r, xc, yc), the postulated circle’s

radius and center. However, since our edge elements contain orientation informa-

tion, they only vote for circle-centers if they would be tangential that circle. A wide,

elongated voting kernel is used in order to represent shapes which are not precisely

circular and to prepare for the coarse descretization necessary to restrict the feature

vector length to a manageable size. Finally, we use a non-standard step in order to

remove noise from the result. In the usual Hough framework all edge elements vote

equally into the parameter space. The natural extension would be to have all oriented

edges contribute equally into the parameter space, according to their magnitude. In-

stead, for each point in the parameter space we remove all votes from the strongest

contributing orientation. The effect is that only circles with support from more than

one orientation are retained. Although they are not shown for reasons of space, re-

sults suggest that sum-minus-max outperforms other operators in its place: the sum,
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Figure 5-5: An illustration of the circle feature operating on a natural image (white circles
of radius 4, 8, and 16 have been added artificially for illustrative purposes). In the bottom
row, step 4 has been removed to make the computation more similar to the standard
Hough transform. Note especially that the linear version gives strong circle detections over
the straight edges in the light post, building, and car shadow. The non-linear version
does not, and in the building only responds strongly to the rectangular windows at the
appropriate scale. Note also that the detection of the car tires is obscured by the car edge
detection in the linear version.

max, and median. Moreover, the summation of magnitudes greatly outperforms the

common generalized Hough transform framework, i.e., thresholding followed by one

vote per location.

Our current implementation of this circularity operator costs approximately one

second per 128×128 pixel image. This is computing circles at 9 different scales. Each

scale is computed independently, so the computational cost is linear in the number

of scales represented.

Property 3 (elimination of common distractors) Our algorithm (Fig. 5-4) re-

duces the support of imaginary circles generated by long straight boundaries in an

image. See Fig. 5-5 for an illustration.

5.3.2 Experimental validation

Again we demonstrate performance on the StreetScenes crop-wise detection task by

appending the baseline features with the circularity features. As can be seen in table

5.1, for each object category, the inclusion of the circle features significantly improves
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Figure 5-6: Examples of parallel (a–c) and symmetric (d–f) figures.

the detection score. Our experiments suggest that the choice of classifier, whether

gentleBoost or SVM, is not important.

In order to demonstrate the importance of the non-linear sum-minus-max step,

we also show the results of a similar algorithm which does not remove the support

from the dominant orientation. The results of this comparison are listed in the same

table under the heading, “circle linear.” For all three classes tested, the non-linear

circle representation is significantly more powerful. This likely due to the superfluous

form detections caused by the prevalence of straight edges in the images, a feature

which is already captured in the baseline representation.

5.4 Symmetry-based image descriptor

It has been shown that humans are extremely adept at detecting symmetry in natural

images. As symmetry is a relatively rare phenomenon in images, it is likely that it

is a useful cue in the detection of objects that exhibit symmetric characteristics. A

measure of symmetry is defined at a position p, scale s, and orientation θ in an image.

Strong symmetry at (p, s, θ) means that if we imagine a dividing line with orientation

θ passing through p, the image on one side is in some way similar to a reflection of

the image on the other side, at scale s. Previous object detection studies examining

notions of symmetry include the work of Saber, Zielke, and Marola [95, 131, 74]. An

illustration of symmetry of the type we will describe here is shown in figure 5-6

5.4.1 Calculating Symmetry as an Image Feature

The symmetry descriptor takes an input grayscale image and outputs an explicit

measure of mirror symmetry for local regions within the image. Specifically, this
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operator measures symmetry by looking for axes of vertical mirror symmetry. While

we leave out many other types of symmetry, such as mirror symmetries at other

axis, axial symmetry, etc., there is a great deal of evidence that humans are far

more sensitive to this of symmetry than others [125]. Briefly, our symmetry operator

will produce a feature vector in which each element estimates for a small area of

possible axis locations, for a small area in the orthogonal y direction, and for a

few different scales σ, how much symmetry evidence there is. The algorithm, in

pseudo-code, is listed in Fig. 5-9. Furthermore, in Fig. 5-7, we show the results of

the symmetry detection algorithm on some test images. It is easy to see that the

symmetric structures are well represented by the feature.

The algorithm detects symmetry by accumulating evidence from pairs of match-

ing patches. Each patch is compared to mirrored images of patches located across a

posited line of symmetry. By taking the maximum of the match strength over a small

pool of locations we build tolerance to variations in the depth of the symmetric ob-

ject and small rotations of the symmetry axis. Afterwards, all match strengths which

would contribute to the same line of symmetry at the same location are summed.

Thus, two mirror patches near to the line of symmetry and a pair far from the line

of symmetry both contribute to the symmetric stimulus. Finally, after accumulating

evidences of symmetry at all points within the image and at a discreet set of scales,

the data is reduced in such a way so as to retain the essential qualities of the sym-

metric information, but fit within a feature vector of reasonable size. This is done

through bilinear resizing of the matrix after taking a local maximum, since we are

not concerned with the exact pixel location of the line of symmetry so much as the

fact that at least one strong symmetry signal exists within reasonably sized region.

The symmetry feature is very expensive to compute, requiring approximately 80

seconds per 128 × 128 image, using the implementation described here. This time

can be cut down significantly by calculating the patch matching scores in grayscale,

as opposed to a S1 like oriented filter space, although this affects performance. The

major cost is in computing the matching scores for all the patches, so it is likely that

the speed can be improved greatly by using a form of approximation, such as PCA,
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to rapidly compute the large matrix S.

5.4.2 Experimental validation

In Table 5.1 it is shown that the addition of the symmetry features to the baseline C1

and HoG features enables the object detectors to achieve significantly better results on

all three objects tested. No linear version of the symmetry detector was constructed,

but it is likely that the maximum and minimum operations are important to the

efficacy of the accumulation process which collects groups of patch matches into local

symmetry measurements. A linear version, in which the max and min operations

are replaced with linear filters, would be weaker at reducing the sparse symmetry

detection matrix to a manageable size.

In order to compare the importance of the representation of the patches, we com-

pared symmetry using gray-scale patch matching to the patch matching in oriented fil-

ter space, as described in the pseudo-code. Our experiments show that while grayscale

matching is capable of capturing some of the notion of symmetry, as expected, the

patch-matching in orientation space was more robust and led to greater performance

improvements on the the detection task.

5.5 Parallelism based image descriptor

The notion of parallelism is similar to symmetry, but the parallelism measure does

not require a reflection. Note that parallelism in terms of parallel geometric lines is

but one form of the parallelism as we refer to it here. Fig. 5-6 illustrates the concept

of parallelism as we refer to it here. Below we will describe an image feature to

represent parallelism in images, and demonstrate its utility in object detection.

5.5.1 The parallelism descriptor

The algorithm to describe image parallelism is detailed in the pseudocode in Fig. 5-

10. This feature is designed to capture whether or not there exists a consensus of
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Figure 5-7: An illustration of the symmetry detection algorithm on three test images.
In the symmetry response images, (middle and bottom), brightness indicates strength
and the color indicates the scale of the detected symmetry, with blue representing
smaller regions than red (white regions have symmetry detected at all scales). The
leftmost toy image contains three regions of perfect vertical symmetry and three
regions of perfect horizontal symmetry. The vertical symmetries are strongly detected
in the response images. The symmetry of the car image is detected as a region of
strong symmetry at the center of the image. As can be seen in the third column,
random textures have little symmetry, and continuous lines have symmetry at a small
scale, but not larger. The bottom row indicates the resolution at which the feature
is used in the detection experiments.
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Figure 5-8: The left image indicates the average symmetry response for the cars in the
StreetScenes database, while the right image shows the average symmetry response
from the non-car data-set. Brighter pixels indicate on average stronger symmetry.
The color indicates the scale of the symmetry, with blue indicating smaller symmetries
than red. From these images we see that the symmetry descriptor is discriminative
for the car class, as cars tend to have symmetry in the center and bottom of the
image, whereas non-cars do not tend to exhibit any structured symmetry.

Given an input image I, perform the following algorithm

1 Initial filtering: Compute absolute derivatives of I in four orientations D(x, y, θ)

2 Loop over scales:For a discrete set of scales σ ∈ {2
0
3 , 2

1
3 , ..., 2

15
3 }

a: Let D equal D resized by a factor of σ in x and y D → D

b: Calculate Local similarities: ∀{x, y, dy, dx}, dy ∈ {−7...7}, dx ∈ {0...25}

bi: Let P1 be the 7× 7× 4 patch of D centered at (x− dx, y)

bii: Let P2 be the 7× 7× 4 patch of D centered at (x+ dx, y + dy)
biii:Let S(x, y, dx, dy) = NormCrossCorr(P1,mirror(P2)) S(x, y, dx, dy)

c: Half-wave rectify S max(S, 0)
d: Retain only maximum of S over dy S(x, y, dx)
e: Take sum of S over all dx S(x, y)
f: Resize S(x, y) to 128× 128 and store as a layer of G G(x, y, σ)

3 Reduce feature vector length:
a: Local min of G(x, y, σ) with a kernel of size 8 in y ª(1, 8, 1)
b: Local max of G(x, y, σ) with a kernel of size 8 in x ⊕(8, 1, 1)
c: Perform a 8× 8 subsampling in (x, y) ↓ (8, 8, 1)
d: Bilinearly resize G(x, y, σ) to 16× 16× 4 ⇓

4. G(x, y, σ) is our 128 dimensional feature vector. G(x, y, σ)

mirror:

Given a multi-layer image I(x, y, θ) where x ranges from 0 to xmax, and θ

ranges from 0 to 180, the mirror image Î is defined as I(xmax−x, y, 180−θ).

Figure 5-9: Algorithm for computing image symmetry features. A feature vector of rea-
sonable length is computed from an image of arbitrary size.
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Given an input image I, perform the following steps:

1. Initial filtering: Compute absolute derivatives of I in four orientations. D(x, y, θ)
2. Local similarities: Compute local similarities of every 5× 5× 4 image S(x, y, dx, dy)

patch to all neighberhood patches of a distance 4 ≤ {dx, dy} ≤ 25.
3. Perform the following sequence of morphological operators:

a. Local maximization with a kernel of size 3× 3 in (dx, dy) ⊕(1, 1, 3, 3)
c. Perform a 3× 3 subsampling in (dx, dy) . ↓ (1, 1, 3, 3)
b. Local summation with a kernel of size 16× 16 in (x, y).

∑

(16, 16, 1, 1)
c. Bilinearly resize S by a factor of 1

8 in (x, y) . ⇓ (8, 8, 1, 1)
d. Local maximization with a kernel of size 7× 7 in (dx, dy). ⊕(1, 1, 7, 7)
e. Perform a 7× 7 subsampling in (dx, dy) . ↓ (1, 1, 7, 7)

4. Obtain a 4D result. R(x, y, dx, dy)

Figure 5-10: Algorithm for computing image parallelism features.

relative locus of similarity within spatial sub-regions of the image, i.e., if a cluster

of pixels all agree that they are similar to a certain shifted sub-region of the image.

First, the image is filtered and rectified into a set of 4 orientation images. In stage

2, each (5 × 5 × 4) image patch is compared to all patches of a similar size within

its neighborhood. L2 distances of the edge-response patches is used as the similarity

measure so that edges only match similar magnitude edges of the same orientation.

In stage 3 the local maximum of this similarity measure within a (3 × 3) region of

the relative transformation is taken order to allow a small amount of distortion in the

parallel shape. Next, for each relative location separately, a local sum is taken in the

space of the image plane. If a group of nearby patches agree that the image is similar

at this relative location, then the sum will produce a peak at the center of the group.

Finally the data structure is processed via local information pooling and subsam-

pled. This is done for two reasons, firstly to reduce the feature vector to a manageable

size for modern statistical learning methods, and secondly to allow tolerance to the

exact location and nature of the parallelness. The responses in the (x, y) image plane

are pooled by adding them locally, in order to compute a consensus of similarity, but

the responses in the (dx, dy) direction are pooled by taking the maximum. The intu-

ition behind this is that we are only interested in the one translation that gives the

best explanation of parallelness, not in the average parallelness over all translations.

The total computation cost for the Gestalt parallelness feature over an image of
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128 × 128 pixels is approximately 60 seconds. This cost is dominated by the need

to calculate the local patch correlations for all locations within the image and over

a set of translations, dx and dy. As in symmetry, it is likely that the feature can

be computed much faster using an approximation. Also, we should note that our

method is certainly not the only method of computing parallelism. It might be the

case that some other method is able to extract the parallelism information equally

well and with much lower computational cost.

5.5.2 Experimental validation

Referring once again to table 5.1, we see that the addition of the parallelism features

enables the object detectors to achieve significantly better results on all three object

databases. In order to demonstrate the necessity of the non-linearity in the compu-

tation of the feature vector, we have produced a second version of the parallelness

detection algorithm, in this case replacing all of the dilation operations with sums.

We see again that non-linearity is an important part of the computation, but this is

not as consistent across datasets as in the other descriptors. Note that if the dilation

operations are linearized, then the entire algorithm can be collapsed into one sum

on the original data structure, i.e., each feature would simply be the sum of a set of

individual patch similarities.

5.6 Experiments on the 101 objects dataset

A final supporting result is given on the popular 101 objects dataset [36]. The re-

sults reported here are the average and standard deviation, taken over all 101 classes

plus the background class, of the object recognition performance obtained from 20

independent trials. In each trial 15 random training and 50 random testing images

were selected from each class, fewer testing images were used if not enough were in

the database. In the final score, all errors are weighted such that each class has the

same contribution regardless of the number of the testing images. Note that by using

all of the testing images at once, one gets a much better performance, due to the
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over-representation of some classes. Therefore, to compare with previous results, we

use the 15/50 protocol with reweighting.

Using this protocol, Berg et al.[6] report 45% correct detections on the non-

duplicated version of the dataset. Serre et al. [101], report an average performance of

35% using 10, 000 “global” standard model C2 features, but using the publicly avail-

able code, combined with a per-feature variance normalization step, we were able to

improve this performance to 36.86%± 1.64% using only 3, 000 such features. (All of

the results were obtained using a one vs. all linear SVM).

Using the same splits, the C1 features gave 30.93% ± 1.20% by themselves, and

44.18% ± 0.76% when added to the 3, 000 C2 features. Continuity gave, when com-

bined with C2 44.59% ± 0.93%, and 30.45 ± 0.34 by itself. Circularity gave, com-

bined with C2 41.48% ± 0.52% ( 26.96 ± 0.88 alone). Parallelism by itself received

17.10%± 0.35%, and did not help C2 (37.47± 1.05). All the features taken together

C2, C1, Continuity, Circularity and Parallelism produced a score of 48.26% ± 0.91,

which is the highest result ever reported. Symmetry was not available at the time of

this test.

Note that, although Continuity, Circularity and Parallelism did not score very

high individually, they do outperform the results of Fei-Fei et al. (16% [36]) and the

baseline result of Berg et al. (17% [6]). The main contribution of these features,

however, is not in representing an image by themselves, but as a supporting feature.

The additional gain over a system which already performs well is valuable, by the law

of diminishing returns.

5.7 Random Visual Features

It is a valid criticism that the Gestalt features are highly engineered, and there is

little support that their complexity is warranted. Is it possible that any image feature

made of the same sorts of elements can lend equal support to the detection problem?

We have attempted to address this problem by building random image features and

showing that the specially engineered features are better than random features built
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Operation Parameters Possible Parameter Values

Dilation Kernel Any (5× 5) binary matrix approximating
an oriented bar. Thickness and orientation

are drawn independently from {0◦..180◦},{1..7}.
Erosion Kernel Same as above.

Abs(Linear Filter) Kernel either (50%) (5× 5) Gaussian of random Σ
or (50%) (5× 5) Gabor of random orientation.

Bilinear Resizing Newsize {0.25 to 0.85 of current size},
drawn independently for each dimension.

Method either bilinear or nearest neighbor.
Decimation Dimension either x or y.

Span any integer in {1..8}.

Table 5.2: The atomic operations defining the space of random features. Each ran-
dom feature was constructed by building an independent random sequence of these
operations, and selecting random parameter values for each operation.

of similar components.

In order to select the random features, it was necessary to posit some space to

randomly chose them from. In order to make them similar to the gestalt features

described above, it was decided to begin with the image filtered with four oriented

filters, and then to randomly select a sequence from a familiar set of operations. This

set included linear filters, local maximization, local minimization, down-sampling, and

bilinear resizing. Random selections are made from this set until the entire feature

length would be less than 1, 000 values. For each atomic operation, many parameters

are possible, such as the type of filter, the dimension and span with which to down

sample, etc. These parameters were also selected randomly from a predefined set

designed to mimic the types of oriented Gabor filters, Gaussians, and other tools

used in the engineered features. For instance, the local maximization can take place

over a local rectangular field, or an oriented bar, like in the continuity operation. The

random operations are listed in table 5.2.

Ten such random feature-computations were generated. In order to save time,

rather than testing on all three object types, only cars were tested in this experiment.

Similarly to previous experiments, the new feature was concatenated with the baseline
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feature, either of C1 or Triggs, and 25 trials were run using random train-test splits.

The results of these experiments are illustrated in figure 5.7. We see that the addition

of these features does tend to improve performance slightly over the baseline levels,

but not to the same extent as our engineered features. It is also interesting that some

features seem to be significantly more useful than others. Perhaps an even stronger

classifier can be built by searching the space reachable by these features using some

searching algorithm, such as genetic algorithms (GA). It is probably beyond our

current computational power to do such a search, however, as we would need to

perform many tests on many different types of objects in order to get an idea of

the real value of the feature without over-fitting to one particular data set. These

computational issues were addressed in previous GA-for-image-features studies by

limiting the search to either a small feature-computation space or tuning on only one

object database [57, 97].

As an aside, it is conceivable that by descretizing the set of parameters for each

atomic image operation one could even build a countably infinite set of the features

and search through them in order. The set of features described here includes, as

points in the space, the SIFT operation, HoG modulo the normalization step, C1,

and the continuity feature described above. By adding or removing computational

atoms, one can adjust the set of possible features. By allowing offsets it would be

possible to build the Gestalt circle feature, and by adding offset-autocorrelation one

could construct the parallelism and symmetry features. The same few building blocks,

when organized in different patterns, can perform a wide variety of disparate image

operations.

5.8 Parameter Tuning

In the design of our gestalt features we have taken the liberty to engineer solutions

which capture the target gestalt image properties. These solutions have often included

chosen parameters which have no formal rationale for their hand-selected values. In

this short section we show a few scans across relevant parameters showing how the
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Figure 5-11: Performance of the randomly generated image features on the crop-wise
car detection task. Ten random image feature algorithms were generated and tested
on the car data. The resulting features were concatenated with the C1 data and
tested similarly to the engineered Gestalt features. The two box-plots above display
the performance in terms of equal-error-rate (left) and true-positive-rate when false-
positive-rate equals 1% (right). Note that the y-axis on the left graph has been
flipped to make the results perceptually similar, up is better. Superimposed on the
box plots are three horizontal lines. These lines correspond to the performance of
the C1 features alone (thin line), the C1 features plus the continuity features (dotted
line), and the C1 features plus all four gestalt features (thick line). As most results
lie between the thin line and the dotted line, we theorize that the randomly generated
image features are helpful to the detection problem, on average, but not as helpful as
the continuity features. Results adding random features to HoG are similar.
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features’ utility can depend on specific parameters chosen.

5.8.1 Kernel Size in the Continuity Computation

Referring to Fig. 5-1, the pseudocode describing the continuity algorithm, in steps

3a and 3b a morphological operation is performed using a kernel of a specified size.

This kernel size was selected so as to be large enough to capture a significant amount

of information about the local support for the continuous edge, but not so large as

to be computationally inefficient. Furthermore, the relative size of these two kernels

significantly changes the properties of the algorithm. If the dilation kernel is larger,

then gaps in the edge can be bridged, but hallucinatory contours are often detected in

textured regions. Conversely, if the erosion contour is larger then only true contours

are detected, but small gaps, often due to noise, grow to consume the contour at some

point.

In two separate crop-wise car-detection experiments, we vary the size of these

kernels and demonstrate that the performance gain is relatively tolerant to variation

therein. In figure 5-12 the diameter of the dilation kernel is varied while holding the

erosion kernel constant at 7 pixels. The best performance is when the size of the

two kernels is matched, with performance dropping off when the dilation kernel is

too long or too short. In another experiment we varied the size of the two kernels

simultaneously, but the results showed only that the feature’s utility is relatively

tolerant to this parameter.

5.9 Conclusion

The idea that more meaningful image representations can produce significantly bet-

ter recognition results is attractive, but it is not trivial to demonstrate. In this

chapter, we have revisited the principles that were used to build effective histograms-

of-orientations-based features, and used them to derive interesting mid-level features.

Histograms consisting of spatial bins are used, just like in SIFT and HoG, and non-

linearities are employed in a way which is not unlike the maximization in C1. Patch
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Figure 5-12: Variations in the size of the local maximum kernel in the continuity
algorithm (stage 3b) effect the performance on a crop-wise car detection task. Here
we only show performance of a classifier trained on C1 plus continuity, but results
on HoG plus continuity are similar. The hand-selected value for this parameter, 7
pixels, is close to the local optimum performance, which seems to depend on which
performance measure one chooses to optimize for.

based approaches in the parallelism and symmetry operators are similar to their func-

tion in C2. By using these atomic operations, and changing the details, we have built

new image operators enabling us to describe useful mid-level concepts.

The novel features presented in this chapter collect image information that is not

necessarily concentrated in space (HoG, SIFT, C1) or in scale (C1), but instead along

other modes of image structure. Evidence pooled from image gradients along lines

or circular arrangements is combined to support hypotheses of image structures that

are unlikely to be coincidental. Patch-based similarities are grouped based on coinci-

dence the spatial patterns of similarity in order to build an effective representation of

parallelness and symmetry. Other Gestalt features, such as grouping or 3 −D form

may constructed using similar structures. It should be noted that our objective was

simply to represent these concepts in any way to see if they could assist the object

detectors. It is likely that there other, perhaps better ways of extracting this Gestalt

information. Our goal was simply to show that this information is useful.

The four novel image statistics improve substantially the performance of state-of-

the-art detectors. The performance gain is consistent across several challenging real

world datasets, indicating that the framework is fruitful.
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After noting the increased performance due to the gestalt features, a natural

question to ask was whether these types of features might be computed in the human

anatomy. Looking into the psychophysical research on symmetry perception, it was

decided to repeat a recent experiment by Pashler [53], in which human subjects were

asked to discriminate symmetric from near-symmetric stimuli, and to discriminate

near-symmetric from non-symmetric stimuli. We trained classifiers were trained to

perform the same task using either the C1 features or the Symmetry features described

in section 5.4. The symmetry features drastically outperformed the C1 features on

this task, but this was expected. What was surprising was how closely the C1 results

matched the human results. This suggests there may not be any dedicated symmetry

processing in the feed-forward pathway in the human anatomy.

In cooperation with the lab of Olvia, we are in the process of running some psy-

chophysical studies using rapid presentation tasks to see if the standard model is

enough to capture humans’ ability to recognize all these Gestalt stimuli, or whether

the additional gestalt features are necessary. We look forward to exploring which, if

any, of these features might be computed in the biology.
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Chapter 6

Feedback Strategies for Hierarchal

Feature Models

To date, there is no satisfactory explanation for the role of feedback connections in

the primate visual system. These abundant feedback connections dominate the visual

areas in a 10 to 1 ratio over the feed-forward connections [20]. A clearer understanding

of their function could give insights into how to build better computer vision systems.

Theories for the role of feedback connections have usually focused on attentional

mechanisms and hypothesis verification loops. In Hawkins [49], it is proposed that

feedback connections are involved in prediction-verification recursions wherein the

generation of a predicted representation (top-down) is matched with the upcoming

representation (bottom-up). Computational implementations of these hypothesis-

verification theories have had limited success when compared to appearance-based

recognition systems, although some exceptions exist (e.g., [16]).

In Reverse Hierarchy Theory (RHT), proposed by Hochstein and Ahissar [52],

information is first processed automatically bottom-up, while perception progresses

in the opposite direction, with conscious access to generalities first, and details later.

RHT can account for many seemingly disparate psychological phenomena found in

humans, such as the different modes of visual search, and the properties of vision at

a glance compared to vision with scrutiny. However, in biological systems, verifying

this or any other feedback theory remains extremely difficult.
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As far as synthetic computational systems, feedback is often used in the training

phase of neural networks and graphical models. However, the authors are unaware

of any work showing how feedback can be useful for modern discriminative object

recognition systems, such as those employing SVM or AdaBoost for classification.

Currently, these discriminative systems seem to outperform other technologies but

still fall far behind human performance. Adding feedback is one promising direction

to close the gap.

Here we create computational implementations of different hierarchal architectures

to see if an improvement can be made over the performance of simpler discriminative

object classification systems. In our framework, we equate the cognitive notion of

perception of an object (from RHT) with the computational output of classifiers

trained to respond strongly to that object. We describe five computational hierarchies

and experimentally evaluate their relative performance.

6.1 Background: Hierarchical vision systems

Before appearance-based models became standard practice, hierarchal representations

were common in computer vision. Objects were often represented as compositional

hierarchies of atomic forms, and object searches were performed by detecting for

appropriate groups of these atoms in oftentimes combinatorial sized search spaces

(e.g., [75, 31]). With the advent of advanced statistical learning tools and more pow-

erful computers, the best performances were next reported by shallow architectures

using learning directly on top of relatively simple image representations. Recently, hi-

erarchal systems, now with multiple levels of learning, have regained their popularity

(e.g., [63, 99]).

Along with the additional power and flexibility available to hierarchal systems

come problems inherent to their design. It remains unknown how best to factor the

vision problem: should object parts be represented explicitly, at what stages should

learning be employed, etc. In [116], a generative model was trained using both the

appearance of target objects, and the gist of the scenes in which these objects were
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likely to appear. While factoring the conditional of a generative model into layers

of hierarchy is a well defined problem, the best way to combine these layers in a

discriminative framework is less clear.

Part-based systems These are hierarchal architectures which explicitly represent

spatially localized structures related to the task. For instance, the part-based face

detector detailed by Heisele et. al. [50] employs detectors for the eyes, nose and

mouth. The part based system of Ullman et. al. [119] is similar in that sub-parts

of the image are represented explicitly by independent detectors within the system.

However, in this system, instead of hand selection, mutual information is used to

select which object parts will be represented. Other part-based object detection

systems which automatically learn, via clustering or otherwise, which object parts

to explicitly represent include [126] and [65]. In [12], feedback is used in order to

resolve ambiguities in the part detections by considering inter-part relations. These

part detections subsequently become the input to a higher decision making stage.

Classifiers as features Several systems have used discriminative classifier outputs

as learned intermediate visual features, e.g., [111, 4]. In this case, rather than de-

tecting related parts of the object, the detectors are tuned to respond to all sorts of

possibly unrelated objects, e.g., one might imagine using the output of a pedestrian

detector as a feature when building a building or horse detector. The intuition is that

classifiers trained to perform tasks in one domain may learn to implicitly represent

patterns and invariances in a host of related domains. The subsequent use of these

classifier outputs as input to a higher level of the hierarchy allows for the transfer

domain knowledge. Another related problem is to learn an intermediate level image

representation without the luxury of label information for the non-target-object cat-

egories. In this case, it may be necessary to use an unsupervised algorithm, such as

clustering or parametric models, as in [65, 61] or [126].

The convolutional network The system of LeCun et. al. [63] is an example of a

multi-layered neural network designed and trained via back-propagation to perform
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object detection and recognition tasks. It can be seen as a type of visual hierarchy

in which learning occurs at each level. Rather than explicitly representing parts, a

hierarchal object representation is induced through the clever network architecture.

Although feedback is used during the training phase, during testing the convolutional

network is completely feed-forward, leading to very rapid performance.

The standard model As described in detail in Ch. 3, the standard model describes

a quantitative model of the feed-forward pathway of the ventral stream in visual

cortex. So far, the modeling effort has focused on the feed-forward architecture of the

visual stream. Strong evidence suggests that feed-forward pathways are responsible

for the first 100 msec. of biological visual perception [86, 110] and that the basic steps

for recognition are completed in this time. Of course, a complete model of vertebrate

vision must take into account image sequences, as well as top-down signals, attentional

effects and the structures mediating them (e.g., the extensive back-projections present

throughout cortex).

Reverse Hierarchies Hochstein and Ahissar’s Reverse Hierarchy Theory, (RHT)

[52] proposes that visual information initially travels through the feed-forward vi-

sual hierarchy, and that perception begins at the higher levels, reaching the lower

areas via feedback connections, forming a reverse hierarchy. They point to three

lines of evidence to support this theory. Firstly, the gist of a scene, consisting of

broad category information, is consciously perceived first, and detailed information

is only consciously perceived later when vision with scrutiny is engaged. The ability

to perceive the contents of rapidly presented images, as seen in the Rapid Serial Vi-

sual Presentation (RSVP) paradigm [88], as seen in repetition blindness and change

blindness phenomena, is further support. Since the receptive field sizes needed to

process the gist of a scene are only seen in neurons of higher visual areas, while cells

coding for precise details are found in lower visual areas, these phenomena suggest

that perception starts at the highest levels and travels backward to the lower levels.

The second piece of evidence comes from the visual search research, where it has
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been well established that there are two modes of search, one mode that is rapid and

parallel and one mode that is slower and serial [118]. The rapid parallel detection

of objects often uses complex features such as circles and faces that are only avail-

able in higher visual areas, suggesting again that high level areas have consciousness

first [112]. The final line of evidence comes from visual learning research, where it

has been shown that visual tasks that are learned more rapidly tend to generalize to

other similar spatial stimulus conditions, while harder tasks that take a long time to

learn tend not to generalize outside of the specific conditions where they are learned

[35]. Hochstein and Ahissar hypothesize that learning that has greater generalization

occurs in neurons with large receptive fields and thus must be occurring in higher

level areas, and since this generalizable learning occurs earlier than specific learning,

the authors conclude that learning occurs in higher areas first.

6.2 Alternative classification strategies

Given a hierarchical image representation, there are several alternative ways it can

be classified. If each level of representation is given as a vector, one can concatenate

all of the representations to a single long vector. Another option is to classify each

level separately and then combine the classification results. Below we will name and

describe five such options. In our experiments we focus on two level hierarchies since

modern representations with more than two levels are rare. It is straight-forward to

enumerate more strategies for hierarchies with three or more levels, and to generalize

the structures we have defined to these larger hierarchies. Below, we clarify some of

the basic concepts we use.

High level vs. low level Strictly speaking, representation B will be higher in the

hierarchy than representation A if computing B requires computing A. When process-

ing takes place information is lost. Hence, it is always the case that higher levels of

hierarchies are less informative than lower levels. However, these representations are

often more explicit, resulting in a more straightforward classification. On the other
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(i)

(ii)

Figure 6-1: (i) A simple feedback system. (ii) The unfolded version of the same
system. Since we are not concerned with the actual location of the computation we
view system (i) and system (ii) as being equivalent.

hand, simply concatenating several representations will always result in no less infor-

mation than any individual representation. Yet, it is the ease in which the classifier

can access the relevant information that determines the overall accuracy, and having

many irrelevant variables can diminish performance.

Feedback In a simple feedforward system, each level of the hierarchy is used only to

produce the next level. Once level l− 1 produces level l, its role is completed, and it

is never used again. In systems that employ feedback, information from higher levels

is passed back to lower levels and the combination of both is then being considered.

An example for a feedback system might be a system where representation A

produces image representation B, which in turn through some process updates rep-

resentation A. Finally, further processing is applied and an output is produced (see

figure 6-1(i)). In this work we do not consider the location in which the feedback

takes place. Instead we separate the initial representation (A) from the later repre-

sentation (Ā). Our view of the system would resemble figure 6-1(ii): representation

A is computed, and representation B is computed from it. Representation Ā is then

computed from A and from B, more processing is then done to produce the final

system’s output.

We assume that the feedback system and the unfolded system are equivalent.

We describe our systems as unrolled systems, which resemble feed-forward systems.
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(a) basic (b) concatenation (c) feed-forward perception

(d) reverse hierarchy (e) semantic concatenation

Figure 6-2: These figures illustrate alternative hierarchy architectures (this is not a
full list). A circle represents an image representations, a square represents classifica-
tion, the small full triangle represents the output. For example, A© can refer to the C1

image representation, while B© can refer to the higher level C2, a square can represent
the output (raw distances from hyperplanes) of a 102 one-vs-all linear SVM classifier
trained on the 101 objects (plus background) dataset. (a) Basic feedforward archi-
tecture. (b) Concatenation of the layers followed by a classifier. (c) A feedforward
perception architecture in which the perception of the lower level representation is
used in combination with the higher level representation to create the final perception.
(d) Our interpretation of the reverse hierarchies [52]. The perception of the high level
features is classified together with the low level features to create the final perception.
(e) The semantic concatenation architecture, in which the final perception is a result
of combining the perceptions of all of the previous levels together.
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However, these system are not simple feed-forward systems (as defined above), and

since they can be implemented as feedback systems, they can be studied as a model

of these.

One can imagine the image representation Ā to be similar in nature to A, yet

improved by incorporating higher level information that is available in representation

B. For example, A might contain edge information, and by employing higher level in-

formation that is available in representation B, closed contours are being emphasized

in Ā. In a more elaborate example, B is classified (e.g., in a car detection system to a

car or not a car) and the results of this classification are used to emphasize particular

properties in A (such as the object boundaries or the removal of shadows in the car

example).

We have conducted experiments akin to these two examples. Unfortunately, the

results only demonstrated the difficulties in implementing a robust feedback system.

In one experiment we tried to emphasize elements of the C1 image representation [101]

that contribute to long continuous boundaries as detected by our continuity detector

[14]. The hope was that the modified C1 would have better recognition capabilities

than the original C1. In another experiment, we tried to emphasize the most infor-

mative C1 elements in a car detection task using feedback. For this experiment, we

used a boosting classifier on-top of weak classifiers, each corresponding to a single C1

unit. The units which contributed positively to the classification were made larger in

value and projected back into the S1 layer. Finally, a new C1 representation was then

computed. Both of these experiments produced disappointing results: the modified

C1 did not significantly outperform the original. Perhaps, with further study better

results could be achieved.

In this paper, we are much more restricted in the kind of systems we allow. We

assume that the modified representation Ā is to be delivered to a classifier. Since we

do not know how to properly modify A to create Ā, we build a classifier directly on

top of the inputs that contribute to Ā. Hence, if Ā is computed based on A and B,

instead of classifying Ā, we train a classifier directly on top of a combination of A

and B. Since our classifiers are limited in power, and since the number of training
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examples is not high, such a solution is not optimal. However, it does bypass the

need to engineer a modified representation explicitly, which is a task for which our

technological capabilities are limited.

Perception Another simplification that we employ is the equating of perception

with classifier-output. Since perception is computed from the data it is worthwhile

discriminating between processing (going up the representation hierarchies) and per-

ception. In our terminology, perception is a type of computation which is learned from

the data and which produces information which is aimed at being directly indicative

of the objects’ identity. In other words, through training, we expect the percep-

tion vector to be very highly correlated with the label information. In figure 6-2,

representations are marked as circles, while perceptions are marked as boxes.

For multiple class data sets, we employ one vs. all architectures and the perception

vector is as long as the number of classes. Note that we record the raw classifier output

(a real number) rather than a discrete label. This “perception” can then be combined

with other perceptions or with vector image representations simply by concatenation.

For binary tasks, we create many classifiers, each using only part of the training

data, and use the output of all of these classifiers to create a long perception vector

(somewhat similarly to random forests [19]).

A crucial point is that for some hierarchies we train a first set of classifiers to

generate perceptions and then train another set of classifiers on top of the output

of the first set. Ideally, we would use one set of training examples (a validation

set) to compute the first set of classifiers, and another set of training examples to

compute the second set. In our experiments we do not use a separate training set

for the following reasons: (1) when data are expensive, splitting the training set is

wasteful; (2) Since we try to check if classification of classifiers’ output is beneficial on

a separate test set, the diminished performance one gets by using the same training

data twice, can only lead to a more conservative conclusion; (3) We use classifiers

with good generalization ability, limiting the effect of reusing training data.
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6.2.1 Five alternative strategies

Below we present five alternatives strategies for classifying the information in a hier-

archical representation. These alternatives are illustrated in figure 6-2.

basic (a) The most basic strategy to classify a hierarchical image representation is

to simply classify one of the levels of the hierarchy. Usually, one would classify the

highest level available [101]. Another alternative is to use the level in the hierarchy

that produces the best results.

concatenation (b) Another simple strategy is to concatenate the features from all

of the layers into one long vector, and use this vector for classification. This is the

method we used in Ch. 5 and it seems to be quite effective.

feedforward perception (c) By feedforward perception we simply mean that the

perception of the low level image description is concatenated with the raw high-

level description to generate the final classification. As an example, consider a face

detection problem in which we are given both the low-level pixel values, as well as a

higher-level indications of the confidences of detecting certain face parts within the

image. A feed-forward architecture might combine these two cues (pixel levels and

part detections), by training one classifier directly on the low-level input, and then

training a second classifier on the combiniation of the output of this classifier, and the

part confidences. We consider this a feed-foreward architecture because the low level

cues are classified directly to the object label first, building the low-level perception,

and then this perception is combined with the higher-level cues, and classified again

to build the final perception.

reverse hierarchy (d) RHT asserts that higher level representations are being

perceived before low level ones. The initial perception is based on the rough high

level information (or gist). This perception is verified while details are filled in by a

second perception process that takes into account the initial perception and the low

level representation.

134



In our experiments, we concentrate on classification accuracy, and not on the

fine details of recognizing the object (for example, we do not try to recognize the

object’s boundaries or the parts of the object). This enables us to establish common

performance measurements between the varying strategies. The high level feature is

being classified to create a perception vector which is concatenated to the low level

image representation and then classified to build the final output

semantic concatenation (e) This strategy is usually referred to as stacking [130].

Here, perception vectors are computed for each level of the hierarchy separately, and

are then combined by concatenation. The concatenated vector is classified to produce

the final output.

This simple strategy resembles voting, but with important differences. First,

while simple voting cannot take place between two classifiers, semantic concatenation

is successful in such cases. Second, by our definition of perception, the classifier does

not output a label but rather a real valued number. Similar to some voting techniques,

in the final decision each element of the perception vectors may be weighted differently.

6.3 Experimental study

We cannot offer a theory that can predict which hierarchy is the most appropriate

for any given task. Similar to situations where one has to choose between learning

algorithms/parameters, performance measures on a validation data set might be the

prevailing indicator. Below we provide experimental results on several vision data

sets. These experiments show that the type of hierarchy used may have a large effect

on the resulting accuracy.

In the experiments reported, when combining feature matrices X1 and X2, we

normalize matrix X2 by multiplying it by a constant such that the matrix norms of

the kernel matrices K1 = X>

1 X1 and K2 = X>

2 X2 are the same. This way we ensure

that their contribution to the final kernel used by the SVM, K = K1 + K2, is the

same. Hence, even if X1 contains 3000 rows, each being a different C2 feature, and
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Method Recognition rate

Edge (a) 32.67 ± 1.1
Distance Map (a) 35.25 ± 1.7
Both concatenated (b) 48.33 ± 1.9
Feedforward perception (c) 39.37 ± 1.5
Reverse hierarchy (d) 34.50 ± 1.6
Semantic concatenation (e) 51.37 ± 1.7

Table 6.1: Recognition rates in percent for several hierarchical strategies applied to
the polygon dataset. The mean and standard-deviation were computed over 20 in-
dependent trials. The distance map representation is preferable to the edge map.
Combining them provides the best results, but these vary depending on the combina-
tion method. Semantic concatenation (e) does best, followed by simple concatenation
(b). Methods (c) and (d) do not perform well.

X2 contains 102 rows that are the output of one vs. all classifiers, their contribution

would be similar. This normalization is irrelevant for the boosting classifiers, since

the transformation is monotonic.

6.3.1 Toy data set – polygon identification

The random process described in figure 6-3 is used to create a data set of polygons

with three to ten vertices. The goal is to classify each polygon image by the number

of the vertices. Since the vertex location is random and the images are decimated

down to 28× 28 pixels, this is not a simple task to solve using an appearance-based

model. For example, it is hard to distinguish between polygons of 8-10 vertices.

For this experiment, the edge image is used as the low level feature, and the

distance transform is used as the high level image representation. The edge image

was computed by applying the canny edge detector [21]. The distance transform

is computed based on the edge image, and is clearly higher in the computational

hierarchy.

The results are given in table 6.1. The success rates are averaged over 20 repeats

of random experiments. For each experiment, 70 random images per class were used

for training (a total of 560 training images) and 130 random images per class were

used for testing. Random guessing would result in recognition rates of 12.5%
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(i) (ii) (iii) (iv) (v)

Figure 6-3: The process for creating the toy data. (i) A perfect polygon is created
with a given number of vertices. It is enclosed inside a circle of radius 100 pixels and
is rotated by a random rotation. (ii) Each vertex is shifted independently by random
amount of up to 40 pixels in the x and y directions. (iii) The image is decimated to
28 × 28 pixels. Two image descriptors are then used: (iv) the edge image, which is
computed by using a canny edge detector applied to the decimated image, and (v)
the distance transform of the edge image.

6.3.2 The 101 object data set

Here, results are given for the popular 101 classes dataset [36]. The results reported

are the average recognition rate obtained in 10 independent trials of 15 random train-

ing and 50 different random testing images from each object class; (some classes con-

tained fewer than 65 images in which case all the images not used for training were

included in the test set). Using the identical protocol1, where the errors per class are

averaged, Berg reports a performance of 45% on the non-duplicated dataset [6], and

Serre reports an average performance of 35% using 10, 000 “global” C2 features [101].

However, by using the code of [101] combined with a variance normalization step, we

get a performance of 36.86%± 1.64% using only 3, 000 of the C2 features.

To test the performance of the hierarchies on this dataset, we performed two sets

of experiments. In the first experiment we used the C1 features as the low level

representation, and their C2 features as the high level representation. As can be seen

in table 6.2 using the right hierarchies significantly improves performance.

The second set of experiments also includes the novel image representations de-

scribed in chapter 5: Continuity, Circularity and Parallelism (these experiments were

performed before the symmetry algorithm was complete). They are used in concert

with C1 as the low-level of the hierarchy, as we believe such representations to exist in

1In this borrowed protocol there are 102 classes: background is included as a class and faces and
faces-easy are two separate classes.
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Method Recognition rate

C1 (a) 30.93 ± 1.2
C2 (a) 36.86 ± 1.6
Both concatenated (b) 44.18 ± 0.8
Feedforward perception (c) 43.37 ± 1.0
Reverse hierarchy (d) 45.81 ± 1.1
Semantic concatenation (e) 45.16 ± 1.0

Table 6.2: Percentage recognition rate for the 101 dataset where C1 was used as the
low level representation and C2 was used as the high level one. The results for (b)
are given without the matrix normalization step in order to match the results given
in Ch. 5. Normalized results are very similar. (e) and (d) perform best followed by
(b) and (c).

Method Recognition rate

C1 + Cont + Circ + Par (a) 42.56 ± 1.0
C2 (a) 36.86 ± 1.6
Both concatenated (b) 48.26 ± 0.9
Feedforward perception (c) 50.14 ± 1.2
Reverse hierarchy (d) 46.97 ± 0.9
Semantic concatenation (e) 51.18 ± 1.2

Table 6.3: Recognition rate in percent for the 101 dataset, where the low level repre-
sentation consisted of a combination of C1, Continuity, Circularity and Parallelism.
Semantic concatenation (e) does best followed by (c). (b) and (d) perform worse.

the lower visual areas. As the high-level representation we again use C2. The results

(table 6.3) show that by combining the strategy of semantic concatenation (e) with

these image representations one gets the best result on the 101 dataset reported so

far.

6.3.3 Street Scene experiments

In this experiment the hierarchy architectures were tested on 3 binary object detection

experiments using the car, pedestrian, and bicycle objects from the StreetScenes

database [13]. These crop-wise experiments are similar to those performed in previous

chapters. Each database consists of labeled positive and negative grayscale examples

of the class. The results of these experiments, in terms of the statistics of the ROC

138



car pedestrian bicycle

Method TP@FP=.01 Eq. err TP@FP=.01 Eq. err TP@FP=.01 Eq. err

C1 Direct. (a) 82.5±4.9 5.4±1.0 32.9±5.9 19.2±2.4 62.5±8.0 8.6±2.9
C2 Direct. (a) 64.1±5.5 7.9±0.9 44.9±5.1 13.5±1.8 49.3±9.7 11.2±2.8
C1+C2 Concat. (b) 85.4±3.6 4.7±1.0 54.2±6.0 12.7±1.5 69.1±7.2 8.2±1.9
FeedFwd. Percept. (c) 87.1±3.8 4.5±1.1 46.6±10.3 13.9±1.9 69.9±8.3 7.4±2.1
Reverse Hier. (d) 81.2±5.5 4.8±1.0 60.0±5.3 10.8±1.7 68.7±9.4 7.6±1.8
Semantic Concat. (e) 86.1±4.3 4.8±1.1 63.7±7.8 10.0±1.9 73.6±8.3 6.4±2.0

Table 6.4: Equal error rate and the true positive rate when the false positive rate is
set to 1% for several hierarchical strategies applied to the StreetScenes dataset [14].
The mean and standard-deviation given were computed on 25 independent trails. For
each object class, combining the feature modes in a hierarchal manner improves upon
any direct classification strategy.

curves produced, are listed in table 6.4. Specifically, the mean and standard deviation

of the equal error rate and the true positive rate when the false positive rate is set

to 1% are listed. Independent trials consisted of dividing the data into one third

for testing, and the rest for training. Boosting, rather than SVM, was used in these

experiments.

The first two rows show the result of directly applying a classifier to the raw

representations i.e., hierarchy a. In this case, as in all others, the classifier used is

gentleBoost, a variant of AdaBoost, which was run to convergence. The concatenation

architecture (b), in which the two feature vectors are simply concatenated and then

classified, performed better than either feature mode alone for each class. In order to

build the other three hierarchy types, it was necessary to build multiple intermediate

classifiers, in order to build a perception vector. In these cases, for each necessary

group of classifiers, n such intermediate classifiers were constructed by training on

random subsets of the examples, a strategy similar to random forests (but without

replacement). Each subset contained 20% of the training examples. For the results

shown here, n was set arbitrarily to 80, but the results seem to be stable for a wide

range of parameter values. Looking at the results, there does not seem to be a clear

advantage to either forward (c), or reverse (d), hierarchies, but semantic concatenation

(e), seems to consistently perform well.
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Method Eq. err AUC

Continuity (a) 9.35 ± 2.1 95.49 ± 1.7
HoG (a) 7.87 ± 1.5 97.02 ± 0.9
Both concatenated (b) 6.59 ± 1.6 97.73 ± 0.8
Feedf. perception (c) 7.33 ± 2.4 97.46 ± 1.1
Reverse hierarchy (d) 6.66 ± 0.9 98.05 ± 0.5
Semantic conc. (e) 6.34 ± 1.4 98.19 ± 0.6

Table 6.5: Equal error rate and area under the ROC curve in percent for several
hierarchical strategies applied to the pedestrian dataset. The mean and standard-
deviation given were computed on 20 independent trails. HoG is better than the
continuity representation. Combining them gives best results. Strategies (b), (d),
and (e) give best results, while (c) does not seem to do better than HoG.

Another experiment was conducted using the pedestrian data, but this time with

the HoG [28] features as the high level representation. The edge continuity feature

computed as in Ch. 5 was used as the low level information. In 20 independent trials,

the data were split cleanly into 60% training, 40% testing. Here SVM was used. The

results shown in table 6.5 suggest that all combination strategies seem better than

the baseline, except for the feed-forward perception.

6.3.4 Analysis of the results

The general trends in the experiments seem to be that: (1) classifying a single level of

the hierarchy is suboptimal. (2) using perception when combining multiple levels can

be beneficial. (3) perception, in most of the experiments, works well when it is applied

first to the most discriminative hierarchical level. Finally, semantic concatenation

works well in the case where the hierarchy levels are similar in their discriminative

power. Below we provide the details of some sanity checks we performed to verify the

results.

Are the results statistically significant? Since the same training and testing

splits were used for all of the compared algorithms we could verify that the differ-

ences are indeed statistically significant. This was done by applying the paired t-test

on the set of performance measures returned by the algorithms. In the polygon ex-

periment the semantic concatenation method is significantly better than the others
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(p<0.01, corrected for multiple comparisons). In the C1/C2 101 object dataset, re-

verse hierarchy and semantic concatenation are significantly better than the other

methods, but not significantly different from each other (p=0.46). In the experi-

ments of table 6.3, semantic concatenation is significantly better than feedforward

perception (p=0.005), and the latter is significantly better than all the rest. For the

pedestrian experiment, methods (b) (d) and (e) performed significantly better than

the rest (p<0.01), but were not significantly different.

Could the source of discrepancy be better normalization? As mentioned

above, we normalized the data such that contributions from different sources would

be similar. We also performed several experiments examining this normalization. In

one experiment we repeated the 101 object experiment using an AdaBoost classifier,

which is less sensitive to normalization issues. The results were much worse, in the

range of 20% to 30%, but the relative performance of the strategies (a)-(e) remained

the same.

In another control experiment we tested concatenation (b) with different scale

factors. We used the polygon dataset and scaled the distance map prior to concate-

nation with a factor that ranged between 10−5 to 105. None of these experiments

resulted in performance higher than 49%.

Maybe adding a classifier on top of a 1-vs-all representation improves

results? We tested whether taking a set of features, classifying it with a 1-vs-

all classifier to get a vector of perceptions, and then classifying it again improves

performance. Intuitively, since the basic 1-vs-all strategy is in the solution space of

the two level 1-vs-all, performance may increase. It turns out that it does not. For

example, for the C2 feature set on the 101 object dataset, it reduces performance

slightly to 36.10% (from 36.86%).
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6.4 Conclusions

Our results are too preliminary to tell whether the strategy of reverse-hierarchies

is an effective one for object recognition. However, our work, which was inspired

by Reverse Hierarchy Theory, has shown that a considerable performance gain can

be achieved by employing less common classification strategies for visual hierarchies.

One implication is that feedback, even in the limited form studied here, is helpful

for object recognition. For the kind of elaborate feedback systems thought to be

present in the human visual system, involving attention, object based segmentation,

and possibly verification loops, a performance gain in a discriminative framework is

much harder to demonstrate. In terms of feature combination strategies which may

be attractive to practitioners, the benefit gained from simple concatenation is often

significant, but the subsequent increase found in moving to the more complicated

combination strategies is often smaller in comparison. This moderate performance

increase needs to be weighed against the increased complexity when selecting an

appropriate combination strategy.
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Chapter 7

Discussion and Conclusions

At the beginning of this thesis we set out to develop a system which could transform

a visual input into a useful meaning. In order to narrow the scope and to give the

project structure, we decided upon the detection of all examples of several object

categories within the scene as a natural and achievable surrogate for the ephemeral

term meaning. This problem, the accurate detection and localization of objects in

natural scenes, has been a focus for many years by many eminent members of the

community, but only a fraction of this work has been toward the construction of a

general solution, i.e., a solution which is applicable to such a wide variety of objects

that within a typical scene the majority of the space may be explained by objects

detectable within the framework.

This constraint, that for sufficient generality, each object detector should be a

simple instantiation of one general framework, restricts space of potential solutions.

In particular, it is common practice in consumer applications that hand-engineered

detectors are built for each object, focusing only on those visual signatures which

separate that object from the scene. This solution is undesirable for its complexity

and poor scalability; each additional object requires a hand-engineered solution. Our

solution, in contrast, does not require re-engineering the internals of the system to

detect a new object, but rather to simply replace the set of training images.

By the end of the thesis we had developed one system capable of learning to detect

categories as disparate trees and pedestrians, and also demonstrating competitive
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error levels which were often better the state of the art in computer vision, more

accurate even than systems which had been hand engineered and tuned for one object

type on that same object type. This unified approach to scene understanding was

made possible through the use of biologically inspired image representations, including

the Standard Model and the Gestalt extensions, and the judicious use of them through

discriminative learning techniques.

Over the course of this project, it was found that in order to build systems of

greater discriminative power, or, equivalently, systems which output fewer errors, it

is easier to build newer more informative image features, than to design newer more

advanced learning techniques. At an early stage we decided to formulate our solution

in the discriminative framework, rather than the generative one. We could imag-

ine that, in the generative framework, our solution would have involved designing a

distribution which captures the sense of visual object, and tuning this model in dif-

ferent ways depending upon the target object classes. Furthermore, we could imagine

imbedding this model within a larger model which captures notions of inter-object

influences, and adding a hidden “scene” object which might push these distributions

in certain ways. The choice of model is a type of engineering which is in many ways

akin to the design of the image features in the discriminative approach. For instance,

in the generative framework, we might be wise to postulate that our object is best

modeled as some distribution over smaller object “parts” or “fragments,” which may

at times be occluded or invisible, and have relative geometric constraints. Similarly,

in the discriminative framework, it is possible to build detectors of object sub-parts,

and use these detections as an image feature for a subsequent classification stage.

Our choice to use the discriminative framework stemmed from the higher accuracy

rates and lower computational costs which the discriminative approaches have yielded

recently, and also to build upon previous results within this framework.

In Ch. 3 it was shown that, compared to many other well respected state of the

art image representations, the features derived from Poggio’s Standard Model (Ch. 3)

were superior for a very wide variety of object detection tasks. What is even more

surprising about this finding is that these features were not designed explicitly for
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this task, but instead to model part of the human biology. We feel that this may

be explained most simply through the process of natural selection, wherein selection

pressure pushes the visual system towards representations which make it easier for the

organism understand the visual world and thereby thrive. By faithfully copying this

representation, we are in effect tapping into the current solution of a computational

search process of extraordinary power.

Our implementation of the standard model does not claim to completely model

the the human visual search process. It only makes claims about one part, the

early feed-forward part, of the ventral stream of the visual cortex. There is a great

deal of biology that is intentionally left out, including the higher level executive

processes and the and the lateral and feedback connections. This left open avenues for

improvement in our computer vision system, since there was no way for information

from objects to influence each other, or for information from the scene as a whole

to influence the detection process. In Chs. 4 − −6 we addressed these by proposing

models of interaction between object examples, between objects and the scene itself,

and lateral connections within the feature generation structures so as to develop even

more powerful image features.

Because these standard model features were built in a way that involved repe-

titions of certain computational elements and motifs, (a trait which is common in

biological systems), it was a small step to recognize that these same motifs could be

combined in other ways to build further informative features that might help to fur-

ther reduce the errors in the object detecting system. In Ch. 5 we described features

designed using these same motifs to represent explicitly other perceptual stimuli that

humans have shown sensitivity to, the Gestalt features. Features which explicitly rep-

resent the Gestalt concepts of continuity, circularity, parallelism, and symmetry were

designed and implemented, and we demonstrated experimentally that these features

were helpful in the object detection task in ways that the standard model was numb

to. Further advancements in object detection may possibly be made by looking at

these computational motifs more critically, and developing a rigorous search strategy

to find those combinations which are most helpful in a general sense.
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With the development and embellishment of our computational feature hierarchy,

it became more important to investigate the little-understood problem of how best

to combine the multiple modes of features from different levels in the hierarchy so

as to achieve the highest possible levels of accuracy. It was known well before the

outset of this project that different objects have different tell-tale characteristics and

that, depending upon the object class, a particular feature, e.g., color, may either be

either critical or useless. Deciding which features to use, and which to exclude, is a

an example of the classic feature selection problem. Our solution space was different

from feature selection in that it included different ways of inclusion. In an exploration

of possible feedback methods, features of one mode could be introduced earlier or later

depending on the architecture. The experiments in Ch. 6 describe these experiments.

The conclusions were slightly disappointing in that, like choosing which features or

learning methods are best for a particular object, the selection of an appropriate

hierarchy may be completely problem dependant in a way that requires a training

and validation approach. In general, however, it was found that very commonly the

simple strategies of either concatenation or semantic concatenation (a.k.a. stacking)

were as successful as more complicated approaches, and considerably better than

detecting based on one feature mode, or one level of the feature hierarchy.

While the additional features and compositional strategies were very helpful in

the detection of individual objects, it was still felt that detection could be further

improved if there was some way for the presumptive object detections to influence

one another so as to remove spurious object detections which did not fit well with

the regular structure of the street-scenes. In Ch. 4 we designed and measured the

effectiveness of a context system which allowed the object detectors to do exactly

this, all within a discriminative framework. In the development of this system we

demonstrated the use of both general and relative position information. We also per-

formed a series of experiments exploring the way that contextual information is best

extracted from the image. In particular, we showed that strong contextual informa-

tion, i.e., information not due to the object’s appearance but which can nevertheless

be used reliably to influence detection confidences, can be extracted at a low level or
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a high level, and there is little difference in the utility of the two. This important

finding suggests that, in the building of contextual information for one object, there

is little need to detect other related objects in the scene, rather, a strong model of

object context can be developed by sampling color, brightness, and texture features

using a larger receptive field. Another surprising finding from our experiments in con-

text involved the relative utility of context and appearance information. We showed

that, at least for these types of scenes, a reliable detector of object appearance is not

helped much by a reliable detector of object context. That is to say that once an

candidate has been found that appears enough like our target that the appearance

detector will pass threshold, the candidate is very rarely so far out of context that a

combination strategy will reject it. This does not make any claims about situations

when the appearance information is weak, such as when the object is blocked out,

blurred out, of low resolution, or otherwise invisible. In these situations the context

information remains very useful to the detection process.

Through the course of the development of this system, we have strived to compare

fairly to the state of the art in computer vision, and to provide reproducible measures

of performance. Recently it has become the trend in computer vision that methods

and procedures are judged based upon their performance on common public tests. By

making our database public we hope to promote healthy competition and the sharing

of successful methods in scene-understanding. In Ch. 2 we described the choices

we made during the development of the StreetScenes database and the associated

performance measures. Briefly, there was a need for a database which involved the

detection of multiple varied object types, all within the same scenes, so as to pave

the way for the development of more general object detectors, as well as systems for

contextual modulation. By building a system which is capable of detecting a wide

variety of objects in these scenes, building reproducible measures of performance of

this system, and then improving upon this system through the addition of context,

gestalt features, and feedback, the the work of this thesis has moved us closer to

synthetic vision at human accuracy, and better understanding of vision in general.
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Chapter 8

Future Directions for StreetScenes

In the course of an academic endeavor, there are inevitably more questions than

answers, and more opportunities than time to follow through on them. In this chapter

several potentially fruitful pathways for future work are described, along with a few

thoughts about what might be accomplished by working in these areas.

8.1 Video Street Scenes

When a child learns to understand the world around it, it has several advantages

that the system we have described does without, such as stereo information, and the

ability to interact with the visual world. Perhaps the most important among these

advantages, however, is the fact that children learn from a constant stream of visual

input, rather than a set of dissociated still images. In effect, children learn from

one constant video stream. At first it may seem that the additional complexity of

working with the additional time dimension can add nothing but difficulty to the scene

understanding task. It may be the case, however, that the additional richness of the

video stimulus might provide a phase shift which could enable previously impossible

capabilities. For instance, in video, there is the opportunity to learn the segmentation

of foreground objects from background almost automatically, due to parallax motion.

There is no similar cue in still images which would allow us to separate objects

In fact, there is evidence that the visual system makes heavy use of these sorts
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motion patterns in the bootstrapping of the human visual system. Psychophysical

studies of object constancy in young infants have shown that they have more trouble

recognizing still stimuli than moving ones, and only later in development do infants

become as adept at forming object candidates in still stimuli as in moving ones. This

order of visual understanding is supported in studies of late-stage reversible blindness,

wherein subjects of life-long blindness are healed, and their ability to see is closely

monitored [55, 83]. It may be that the most useful representations for vision may be

learned most successfully by learning from video, rather than still scenes, even if, in

the end, the system will only be used to analyze still stimuli.

In addition to the potential for greater accuracy or complexity of the output

systems, there are other reasons to move to video. For instance, working in video

would allow for the recognition of actions, interactions, and behaviors, as well as still

objects. This richer problem could potentially lead to useful technologies in the fields

of surveillance, security, health-care, and many others.

One problem in moving to recognition in video would be in the development of an

appropriate database for training and testing. The development of the Street Scenes

database, which contains fewer than 10, 000 images, cost hundreds of man-hours of

labor. Even one hour of video at 15 frames per second would require the labeling

of 15, 000 frames. In order to build a labeled database large and diverse enough to

perform meaningful examples, we would expect that some automatic method would

be employed. It may be possible, for instance, to build a video database of a street-

scenes like environment with completely perfect labeling using computer graphics.

Modern computer graphics, of the level used in high-end video games, is probably

realistic enough to capture the types of invariance necessary to build a robust system

that could function accurately in a real world setting.

8.2 Reconciling the texture and shape pathways

In the development of any system, simple solutions are preferable to complex ones.

The most striking signature of hand-engineering in the current implementation of the
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scene-understanding mechanism may be that two separate modes of processing are

used to detect the two classes of objects, texture-based objects, such as the buildings

and trees, and shape-based objects, like the cars and pedestrians. While this isn’t

so much of a problem in terms of feasibility, a simpler one-path solution would be

desirable.

One possible solution would be to build an object detector of both the shape-

based and texture-based type for each object class. For instance, one might consider

building not only a shape-based car detector, using windowing to detect cars across

position and scale, but also a texture-based car detector, which would presumably

classify each pixel as either car or non-car. How to reconcile the outputs of the two

detectors is still an unknown, but such a design might help in those situations where

large crowds of cars or pedestrians makes it difficult to detect any single one.

8.3 Computational cost

Currently, it requires several minutes of processing to convert a full size StreetScenes

image into the standard model format, and more time afterwards to scan this represen-

tation for each object class. In any practical use of this sort of system, computational

cost is likely to be a major concern. Since the system was designed in MATLAB

without consideration for running time, there are many avenues for possible improve-

ment. Firstly, it is very likely that the high cost operations, such as normalized cross

correlation and linear filtering can be implemented faster than their current form.

Secondly, it may be possible to use approximations such as PCA to drastically reduce

the computational cost of the C2 layer. Finally, since a great deal of the computation

consists of parallel arrays of simple operations, the entire process may be farmed out

to some heavily parallel hardware, such as a modern GPU, for ultra fast computa-

tion. It is likely that a functional form of the feature-generation and object-detection

architecture could be run at near frame rate.
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Appendix A

StreetScenes Detections and Label

Examples

In this section we will illustrate several examples of the StreetScenes Detections

database, including illustrations of the labels, the output of our complete scene under-

standing system, and some comments for each example. Note that these figures are

best viewed in color, and it may be very difficult to make sense of the the StreetScenes

detections in grayscale. Each example will include the following data:

Original image The original image is a reproduction of the actual image from

the database. The original images are stored in JPEG format and are 960 × 1280

pixels in resolution.

StreetScenes Detections This figure illustrates the output of our current scene-

understanding system. The output of the texture-based object detectors is indicated

by the pixel tint overlay, as in chapter 3. Brown tint indicates building, green for trees,

blue for skies, and the grey/black tint indicates road. The bounding boxes show the

detection of the shape based objects. Red boxes circumscribe car detections, and light

blue for pedestrians. These results do not include the Gestalt features, which have

been shown to cut error rates significantly, but have not been tested in a windowing

framework. It is likely that some, but not all, of the errors could be remedied by the

addition of the Gestalt features.

Label image For each of the 9 labeled object types we will include an illustration
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of the hand drawn polygons associated with this example. A blank image indicates

that there were no labeled examples of this object type in this example. All SS objects

are labeled with closed polygons, but since these polygons sometimes exit the image,

the illustrations produced here sometimes appear as open figures.
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Original image StreetScenes Detections

Ground Truth Labels
Car Pedestrian Bicycle

Building Tree Road

Sky Sidewalk Store

Figure A-1: StreetScenes Index 1: This image is notable only in that it is the first
of the 3,547 scene examples in the StreetScenes database. The system seems to do
well in detecting the pedestrians, and also detects the smaller car in the background,
but it missses the large SUV.
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Original image StreetScenes Detections

Ground Truth Labels
Car Pedestrian Bicycle

Building Tree Road

Sky Sidewalk Store

Figure A-2: StreetScenes Index 3: The white street sign is mistakenly recognized
as sky. The front car is detected, but the back car is not.
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Original image StreetScenes Detections

Ground Truth Labels
Car Pedestrian Bicycle

Building Tree Road

Sky Sidewalk Store

Figure A-3: StreetScenes Index 5: The car is detected correctly. Note how the
trees are detected correctly, even including the trunk, but the green box to the left
of the car is correctly identified as building.
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Original image StreetScenes Detections

Ground Truth Labels
Car Pedestrian Bicycle

Building Tree Road

Sky Sidewalk Store

Figure A-4: StreetScenes Index 24: The large car is beneath the threshold detec-
tion level, and remains undetected. It might be far enough beyond the border of the
image that the windowing process was unable to detect it. Note also the confusion
the system has in labeling the texture objects over the car. It may be a good idea to
develop a car texture detector in a future version.
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Original image StreetScenes Detections

Ground Truth Labels
Car Pedestrian Bicycle

Building Tree Road

Sky Sidewalk Store

Figure A-5: StreetScenes Index 62: The front wheel of the truck is mistaken as a
full car detection. Note how the street detector does not mistake the brick sidewalk
for building.
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Original image StreetScenes Detections

Ground Truth Labels
Car Pedestrian Bicycle

Building Tree Road

Sky Sidewalk Store

Figure A-6: StreetScenes Index 240: The large pedestrian is detected correctly,
but no vehicles are detected Most of the vehicles are heavily occluded, so this is a
particularly difficult example.
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Original image StreetScenes Detections

Ground Truth Labels
Car Pedestrian Bicycle

Building Tree Road

Sky Sidewalk Store

Figure A-7: StreetScenes Index 243: In this example both pedestrians are detected
accurately, and there are few mistakes in the texture recognition. The larger car is a
false negative.
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Original image StreetScenes Detections

Ground Truth Labels
Car Pedestrian Bicycle

Building Tree Road

Sky Sidewalk Store

Figure A-8: StreetScenes Index 247: This image includes two false positive pedes-
trian detections, the left most detection is actually detecting a news-box. There is
one true-positive car detection, but the larger car is not detected accurately. The car
behind the largest one might be a true-positive if it were labeled. It is likely unlabeled
due to heavy occlusion.
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Original image StreetScenes Detections

Ground Truth Labels
Car Pedestrian Bicycle

Building Tree Road

Sky Sidewalk Store

Figure A-9: StreetScenes Index 248: Two of the lesser occluded cars are correctly
detected, but there are several smaller false positives. These types of false positives
are common to this system, since negatives of this sort were excluded from the training
set.
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Appendix B

How to Work with StreetScenes

MATLAB Code

In this section we will discuss the interfaces to the major pieces of code designed to

work with the StreetScenes database. These include all programs to extract data, to

train and test classifiers, and to measure system performance. Also included with the

StreetScenes database are a host of additional helper functions, dealing with image

transforms, translation to and from the LabelMe format, and statistical manipula-

tion of the experimental data, such as the generation of ROC curves, among other

necessary funcitons. These functions are not described here, internal documentation

should be sufficient for understanding their function. Note that the standard model

code is not part of the StreetScenes database, and can be downloaded separately at

http://cbcl.mit.edu.

B.1 General Purpose Code

SSDB InitializeDirectories:

This function saves two matlab files to the path string stored in DBRoot. These files

are referenced in other interface files for information such as the locations of the images

and labels within the database. This function must be run at least once with the correct

pathname of the database in order for the remainder of the functions to work properly
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B.2 Crop-wise Object Detection Code

SSDB Experiment BuildCropDataset

This function searches all or part of the StreetScenes database (SSDB) for examples

of one target object, and extracts positive and negative examples of this object to disk.

This extraction can be used subsequently for crop-wise object detection experiments. Each

extraction will be converted to grayscale and resized to a common size before storage to disk.

The structure options can optionally change much of the default operation of this function.

The target object is controlled by the string contained in the field “ObjectName” of options.

Similarly, it is possible to control which SSDB example scenes are to be extracted from,

what minimum object size to extract, the resolution the extractions will be recorded at, and

the number of negative extractions to take per positive example. Other, less consequential

parameters can also be changed from their default behavior via the options object. Negative

examples are always extracted using a distribution of sizes which matches the distribution

of the positive examples. Positive crop locations are selected by looking up the object

bounding polygon, computing the minimum bounding rectangle, extending the rectangle so

that the aspect ratio will be 1 : 1, and then further padding this square with an additional 1
3

of its size, so that there is some room near the border for edge operators to work. Bounding

box locations are only extracted if they are completely within the scene. Negative locations

are only extracted if they overlap locations of true positives by less than 10% of the area of

the negative box. An undesirable side-effect of this measure of separation between positive

and negative examples is that no negatives are extracted from very small boxes within a

large object.

SSDB Experiment CropwiseObjRec

This function is an example of how to use the crop-wise object methodology to generate

the ROC curves. It takes as input cell arrays indicating the location(s) of matrices saved in

the format output by SSDB Experiment BuildCropDataset, and trains and tests a classifier

based on the contained data. By supplying matrix locations, it is possible to train classi-

fiers based on the concatenation of multiple features at once. The function decides which

examples to use for training and which for testing based on a random split, which can be
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made deterministic by supplying the random seed in the options structure. It is also possi-

ble to control the statistical learning machine and data normalization procedures through

this structure. The output of this method is an ROC curve, associated statistics, and the

learned model. In order to build the statistics contained within this thesis, this function

was run multiple times with preset random seeds. In this way it was possible to compare

different features or different classification algorithms on the same example train/test splits

using a paired t-test.

B.3 Pixel-wise Object Detection Code

SSDB Experiment PixelwiseObjRec

This function returns a structure of testing and training pixel locations from within

the SSDB. This structure, marking locations of positive object presence, can be passed to

the function SSDB RecordPixelwiseJets to record actual samples at these points. The

parameters controlling this function include which SSDB images are to be included, which

objects to sample from, and how far from the object border to exclude. In the pixel-wise

object detection paradigm, unlike the crop-wise, then negative examples are selected based

on positive examples of other objects. Thus, it doesn’t make much sense to extract locations

of only one one type of object.

SSDB RecordPixelwiseJets

This function takes the pixel location structure output from SSDB Experiment PixelwiseObjRec,

and a parameter describing the location of the SSDB converted into some useful format,

such as blobworld or C2, and returns this representation at the selected pixels. The function

writes these jet matrices to disk so that the user can train and test classifiers on them. It

is possible for this function to record the local area of the pixel, a small patch, instead of

just the jet exactly at the pixel.

SSDB Evaluate PixelwiseObjRec

This function measures the performance of classifiers trained and tested on the data

167



output from SSDB RecordPixelwiseJets. The output consists of ROC curves and related

statistics for each binary texture-based object detection problem.

B.4 Box-wise Object Detection Code

CollectBaselineDetections

This function returns a list of ground truth locations for some set of objects within the

SSDB. The output is a struct array in which each element describes one object example,

and is labeled with the object class, the origin image, and the bounding box surrounding

the object. This struct array becomes an input for the SSDB Experiment BBoxwiseObjRec

function so that these ground-truth locations can be compared to the machine-detections.

The ground truth locations can be controlled by choosing which SSDB images to allow, how

large the minimum detectable size is, and whether or not to mandate that all detections

should have an aspect ratio of exactly 1. If elongated detection boxes are allowed, then the

problem becomes slightly more difficult in that each detection must not only localize the

object, but also perform a crude segmentation so as to chose a bounding box of appropriate

shape.

WindowedObjectDetection

This function extracts windows of an image at many locations and scales and passes

each one to a classifier. The output is a set of detection strengths over the scale space.

Default parameters involve detecting a 128×128 pixel box at one pixel offsets in space, and

at a geometric set of scales from the original size down to a size just larger than the size

of the window. The default spacing is a factor of 2.25. Practical solutions can use a much

coarser grain to process more quickly without losing too much accuracy.

LocalNeighborhoodSuppression

The output of WindowedObjectDetection function is a three dimensional structure

describing the confidence of object detection over space and scale, but what is necessary for

the box-wise detection measure is a set of candidate locations and the confidences at those
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locations. Since classifiers tend to be tolerant to some space and scale transformations

is necessary to perform local neighborhood suppression so that each object is detected

only once. This local neighborhood suppression algorithm works by iteratively recording

the global maximum of the space, along with the corresponding bounding box, and then

decimating the local region by multiplying the local region by 1 minus a small gaussian

centered at the detection location. In this way, near locations are reduced in strength, but

distant regions are unaffected. The size of the gaussian is a parameter of the algorithm, but

it is further modified by the detected scale so that large objects remove large regions of the

space, but small objects only decimate the local region.

SSDB Experiment BBoxwiseObjRec

The box-wise object detection paradigm involves attempting to build a pairwise corre-

spondence between the detected locations and ground-truth baseline locations. A detection

is determined to be a true positive if it has the same class label as some ground-truth ex-

ample, overlaps it by τ% of the union of their areas, and the ground-truth example hasn’t

been detected before, where τ is a controllable parameter of the algorithm and defaults to

50%. This pairwise matching can become arbitrarily complicated, especially in the case

when τ is very large and there are many overlapping detections. Our matching algorithm is

a fast approximation to the optimal solution, and works very well in the types of detection

scenarios found in the SSDB.
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