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Abstract

For detecting objects in natural visual scenes, sev-
eral powerful image features have been proposed which
can collectively be described as spatial histograms of
oriented energy. The HoG [3], HMAX C1 [12], SIFT
[10], and Shape Context feature [2] all represent an in-
put image using with a discrete set of bins which accu-
mulate evidence for oriented structures over a spatial
region and a range of orientations. In this work, we
generalize these techniques to allow for a foveated in-
put image, rather than a rectilinear raster in order to
improve object detection accuracy. The system lever-
ages a spectrum of image measurements, from sharp,
fine-scale image sampling within a small spatial region
to coarse-scale sampling of a wide field of view. In
the experiments we show that features generated from
the foveated input format produce detectors of greater
accuracy, as measured for four object types from com-
monly available data-sets.

1. Introduction

In the field of object detection, often the features
used to represent an input are more important to ac-
curate performance than the statistical techniques used
to learn patterns of those features. Whereas the earli-
est detectors used simple cues such as gray-scale val-
ues, wavelet coefficients, or histograms of RGB val-
ues, modern techniques can attribute much of their suc-
cess to features such as Lowe’s SIFT [10], Dalal’s His-
togram of Oriented Gradients (HoG) [3], the visual
Bag-Of-Words [16], and hierarchical networks of selec-
tivity and invariance, such as Poggio’s HMAX network,
LeCun’s convolutional network, among notable others
[9,12,8,7,6].

Most image feature algorithms ingest input bright-
ness samples at regular spatial intervals. This work
adapts the HoG and HMAX feature to input a spectrum
of brightness values, sampled densely at a fine scale at

the center of the target, and coarsely further away. That
is to say, the aim of this work is to improve on existing
methods via adaptation to a foveated input.

The motivation behind such an approach is that re-
cent vision experiments exploring larger spatial regions
(e.g., [17, 18, 11]) suggest that robust object detection
may often be a matter of context as much as appear-
ance. We should sample images at multiple scales so as
to have access to context, shape, and texture.

It is critical to clearly distinguish between two sep-
arate notions of visual scale. In one sense, scale refers
to the size of the visual region under scrutiny, with re-
spect to the object in question. At a large scale, the
target is only a small part of the region. The other type
of scale has to do with the size of the filters used to
inspect the properties of the visual area, and has more
to do with the frequency domain. Many visual feature
algorithms begin with processing an image with many
scales of Gabor filters, for instance, and each filter re-
sponds most strongly to brightness modulations at it’s
own scale. It is the first notion of scale which is the
focus of this work. Hopefully it will be obvious which
scale is meant by context.

There are two major experimental efforts within this
work. First we will explore how the scale of the input
image, relative to the size of the target, affects the per-
formance of an object detector, independent of available
resolution. This experiment will uncover the relative
utility of differing scales. Secondly, multiple scales will
be included into the same classifier in a simple early-
fusion framework. This experiment will show that fea-
tures from different scales provide complementary in-
formation. Adaptations to both HMAX and HoG are
described and tested.

2 TheHoG and HMAX Features

The Histogram of Oriented Gradients (HoG) algo-
rithm and the Hierarchal Maximization Architecture
(HMAX) algorithm are well-known, successful meth-
ods for converting an input image into a mathematical
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Figure 1. Two full source data scenes for
each of the four object types. Targets are
annotated with orange bounding boxes.
Note that the target is generally much
smaller than the scene as a whole.

description, or feature vector [3, 12]. HoG was designed
as an adaptation to SIFT [10] to maximize the detection
accuracy on a pedestrian detection task, while HMAX
was designed primarily to mimic the behavior of the
early stages of the mammalian ventral visual stream.
For the purposes of this work, we will only be using
the first layers of HMAX, S1 and C1.

These features, and other features like them, have
been used to accurately detect a wide variety of objects
in natural scenes [4, 15]. Along with SIFT and Shape
Context [2], they produce feature vectors which are ac-
cumulations of evidences for spatial patterns of oriented
structures within the input. The HoG and HMAX fea-
tures begin by calculating a gradient magnitude and di-
rection at each pixel. This is followed by a pooling and
normalization stage which computes representative sta-
tistics while reducing the dimensionality.

Note that these features, and others, [2, 14], do per-
form a form of multi-scale processing by filtering at
multiple resolutions. Again, this is different from the
multiscale processing than investigated here, i.e., the
size of the input relative to the size of the target.

3 Data

These experiments required a suitable database of la-
beled objects within their natural contexts. It was im-
portant that the data included a wide background field
around the objects, in order to explore larger scales.
Furthermore, many labeled examples of the targets were
necessary in order to have enough data to train a classi-
fier and still perform statistically significant tests. Two
objects in the LabelMe database [13] and two in the
StreetScenes DB. [1] were found to meet the con-
straints. Fig. 1 illustrates typical examples of these data
and relates each object to the number of labeled exam-
ples and the total number of images.

For negative examples, it was necessary to chose
from a distribution similar to that of the positive data,
to prevent learning spurious statistics unrelated to the
presence of the object. Locations and images were cho-
sen from the same marginal distributions as the positive
data. Any candidate negative whose minimum bound-
ing square intersected the bounding square of a pos-
itive example with an intersect to union ratio greater
than .25 was rejected. An independent set of negatives
were chosen for each positive class. Unlabeled exam-
ples can sometimes be included due to imperfections in
the ground truth. These represent a very small minority
of the actual negative examples.

4 Single Scale Experiments

Obiject detectors are trained and tested using an exist-
ing image feature, but the input image is varied in scale,
relative to the size of the ground truth hand-drawn label.
This experiment is repeated for two choices of image
feature (HoG and HMAX), using two different classi-
fiers (gentleBoost [5], and a linear-kernel SVM), on the
four object databases (Pedestrian, Car, Plate and Moni-
tor), as described in Section 3.

Each experimental condition is executed as follows.
First a set of positive and negative images were cropped
from the database. The crop region was selected by first
finding the minimum square bounding box around the
object, and then scaling that box by some scale factor.
The scale factors ranged from a minimum of % to a max-
imum of 16 times the size of the original box. Figure 2
illustrates the set of bounding boxes extracted for an ex-
ample pedestrian. The small scales are indeed smaller
than the target object and may be completely within the
object. The largest scales leave the target object as a
very small part of the window, most of the window is
background or clutter. When the crop region extended
beyond the image, pixels were filled in by assuming the
image was symmetric across the edge. Some small arti-
facts are visible in Fig. 2.



The positive and negative crops are all converted to
grayscale and resized to 128 x 128 pixels using MAT-
LAB’s bilinear i nr esi ze function. This size was
chosen to match the experiments of [15, 3] as closely
as possible. The images were then converted into the
target feature format, and a classifier was trained and
tested using 5 random training and testing splits. In
these experiments 75% of the data was used for train-
ing, and the remaining 25% for testing.

Figure 3 plots the average equal-error-rate (EER) of
the resulting ROC curves as a function of scale. The
blue circles indicate systems trained and testing using
gentleBoost, and the red xs SVMs, though there is no
statistical difference. Scale index 4 is the scale factor
where the extraction boundaries are equal to the mini-
mum square bounding box enclosing the ground-truth
polygon.

Two conclusions are to be drawn. Firstly, in all
cases there is a preferred scale, larger than the mini-
mum bounding box, which reliably produces the most
accurate detections. As the crop region grows larger
or shrinks smaller than this preferred scale, the perfor-
mance suffers. Secondly, we see that that the perfor-
mance of the detector is strong even at scales very dif-
ferent from the preferred scale. This suggests that there
is discriminative information in these measurements.

5 Multi-Scale Experiments

Now multiple scales will be used simultaneously,
and results compared to the single-scale results in
Fig. 4. Sec. 5.1 will simply use the concatenation of
3 feature vectors from differing scales. Sec. 5.2 will
correct for the increased amount of information input to
the system, by using lower resolution inputs.

5.1 3 Full fields

Here we will determine whether a simple multi-scale
approach will outperform a single, optimized scale.
Features from 3 separate scales are fed into the classifier
simultaneously.

First HoG or HMAX features were calculated from
three scales independently as in the previous experi-
ment. Scale factors 2, 6, and 10 were selected, cor-
responding to scales smaller than the object, slightly
larger than the object, and much larger than the object
(scale-factors 0.63, 1.59 ,and 4). These scales were cho-
sen since they represent a wide range, but none so small
or or so large as to severely impair performance, as can
be seen from Fig. 3. A boosting classifier is trained on
each of the three sets of features independently, noting
the features from which the stumps were derived. Then
a single monolithic boosting classifier is trained on the
union of those three selected sets of features. This more

Figure 2. Top: Orange boxes indicate the
sizes of the crops used in the scale sensi-
tivity tests. The largest box extends be-
yond the image. Middle: Uniform res-
olution extractions from each box. Bot-
tom: Pedestrian reconstructed from over-
laid crops.



Feature Used Plates

Monitors

Pedestrians Cars

mean EER

HoG

10 12 2 4 6 8 10 12 2 4 6 8 10 12

HMAX C1 2488 00 2 4 8.8

Scale Index Scale Index

Figure 3. Detection performance as a function of input scale. Detailed in Sec. 4. Scales are indexed
from factor .5 to 16 (too small to too large). Results are illustrated in the form of ROC Equal Error
Rate (EER), averaged over 5 independent trials. Independent of the object, learning machinery
(Blue for GentleBoost, Red for SVM), or representation; the scale of the input image affects the

detection rate in a predictable way.

complicated approach was chosen because of computa-
tional limits on high-dimensional data. Figure 4 illus-
trates the results of this experiment, again in terms of
equal error rate, plotted against the results of the pre-
vious experiment. The solid horizontal line indicates
the results of this experiment, that is, the mean EER of
the classifier trained with features from multiple scales
(dotted lines indicate the standard deviation of the 10
trials). The red line shows the classifier trained with
HMAX features and the blue line HoG features, though
they are not statistically different.

For each object tested, the classification score from
the multi-scale approach outperforms the best score
from a classifier trained at any single scale. These re-
sults support the assertion that complementary informa-
tion from different scales can be leveraged to improve
system-wide performance, even when the underlying
image feature and statistical learning method are un-
changed.

5.2 8 Fields of ;--Resolution

It was shown above that a classifier with access to
features from multiple scales can outperform the same
machine with features from only the best single scale. A
fair criticism is that there was more input to the multi-
scale classifier. It had 3 128 x 128 fields whereas the sin-
gle scale classifier had only one. In this experiment we
apply the same methodology as above, but use 8 fields
of 32 x 32 resolution to address this concern. We sim-
ply apply a suitable HoG-like algorithm to each 32 x 32
image independently, building a feature vector by con-

catenating the values from each scale. With the 8 scales
used here, the Foveated Histogram of Gradients (FHoG)
feature for this input produces 2592 total features.

For plates and pedestrians, the results of this exper-
iment were not significantly different from the above
multi-scale experiment, with mean EER = .129 and
.080, respectively. For monitors and cars the results
were still better than the best single scale, at mean EER
= .105 and .088. This represents 12% fewer errors in
the worst case (plates).

6 Summary and Next Steps

The contribution of this work is to clearly demon-
strate the value of a multi-scale object-detection ap-
proach, when multi-scale information is available. It
was first shown that targets can be detected across a
broad range of scales, and that there is a preferred scale
which is slightly larger the size of the object itself.
The hypothesis that information from multiple scales is
complementary was supported in Sec. 5.1 by training
a classifier using features from several different scales.
The hypothesis was bolstered further in Sec. 5.2 by us-
ing lower resolution images from each scale, and main-
taining high levels of accuracy. Our next steps are to
continue to critically explore the space of multi-scale
image features, so as to design features which are both
discriminative for a wide variety of object types, and
computationally inexpensive.
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Figure 4. Single Scale vs. Multi-Scale. De-
tailed in Sec. 5.1, classifiers with multi-
scale input are compared to the previ-
ous results from Fig. 3 (using HMAX and
boosting). The solid lines indicate the
mean EER of the multi-scale classifier.
Red = HMAX, Blue = HoG. Dotted lines
indicate std. dev. The black star indi-
cates the results from the experiments of
Sec. 5.2
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