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Abstract

This work describes a fully automatic technique to cal-
ibrate a geometric mapping between lidar and video feeds
on a mobile ground-based platform. This data association
is a crucial first step for any multi-modal scene understand-
ing system which aims to leverage the complementary infor-
mation of the two sensors. While several systems have been
previously described which use hand-calibration or specific
scenery to achieve this goal, the system described here is
fully automatic and generates an accurate association with-
out user intervention or calibration objects. The estimated
parameters include the 7 classical camera parameters for
a linear pinhole model, i.e., rotation, position, and focal
length parameters, as well as an estimation of the radial
distortion. The system uses a multi stage process to boot-
strap difficult parameters based on robust estimates of eas-
ier ones.

The calibration algorithm is tested empirically using free
online data supplied as part of the DARPA Urban Challenge
autonomous vehicle competition [14]. Experiments are per-
formed to illustrate the stability, and computation cost of the
algorithm.

1. Introduction and Related Work
Lidar is an increasingly common type of active sensor

which rapidly provides a 3D snapshot of scene geometry.
Applications involving fused optical imagery and lidar in-
clude the construction of 3D models, particularly urban en-
vironments and historical heritage sites, scene understand-
ing for robot navigation, and surveillance [2, 21, 3, 15, 23,
5]. Before detecting any objects or rendering any scenes,
the data from the two sources must be fused into a common
frame. For most systems, this is accomplished by carefully
hand calibrating the sensors before collecting any data. This
can be a laborious and error-prone process. Furthermore, if
the camera parameters somehow change, as may happen by
slight movements of the camera, or gross adjustments from
a zoom lens or articulated mount, errors will accumulate

Figure 1. Lidar-Optical data association. Colorized depth infor-
mation from the lidar sensor is overlaid on one frame. No hand
calibration was performed. Note that the lidar sensor is higher
than the camera. Best viewed in color.

and upstream processes will fail.
Associating the two data streams is not trivial and many

methods have been designed for the task. The hurdles in-
volved in calibrating the two data streams are numerous,
including occlusions, non-overlapping fields of view, and
also the difficulties in matching two very different modes of
data. Methods involving matching patterns of brightness,
such as SIFT and other keypoint matching paradigms, will
not function on the lidar data. Many calibration algorithms
have nevertheless overcome these difficulties.

In [1] and [15] corresponding 2D and 3D points are
hand selected to calibrate cameras to omni-directional range
scanners. Corresponding straight lines or curves can be
used instead of points to calibrate the sensors, as in the
systems described in [11, 4, 9]. The system described in
[19] associates 3D lines detected in the lidar structure to
vanishing points detected in the image, producing impres-
sive calibrations for urban modeling. The system described
here uses a similar technique to refine the final calibration,
matching 3D and 2D contours, but leverages temporal syn-
chronicity to relieve the reliance on straight lines.

A different solution is described by Zhao in [24]. Their
system uses advances in dense metric 3D from uncalibrated
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video to build a 3D point cloud directly from the video. The
two point sets are then aligned via the iterated closest point
algorithm (ICP). No calibration object is necessary, but the
focal length and lens distortion are assumed known and an
initial alignment must be provided. Nevertheless, this is an
intriguing approach in that it may be possible to use addi-
tional video information to recover these missing parame-
ters via autocalibration. Algorithms such as those described
in [16, 17, 8, 22] have shown this ability, and this is an av-
enue for future research.

The contribution of this work is a robust system for au-
tomatically calibrating synchronous lidar and video signals
using relative pose data from an inertial measurement unit
(IMU). Comparatively few assumptions are made about the
source data. Notably, no calibration objects are necessary,
no camera parameters need to be assumed a priori, and no
manual intervention is necessary. It is assumed that the
camera principal point and center of distortion are at the im-
age center, the pixels are square, and that the sensors fields
of view overlap. After processing, the data from the two
sensors are associated, and fused data is made available in
both the lidar and camera coordinate frames.

Section 2 gives an overview of the system architecture
and briefly describes the relevant subsystems, which are
then described in order in sections 4 through 7. Empiri-
cal results and measurements, including accuracy and cost
assessments are provided in Section 8.

2. Data and System Overview
The calibration system was designed around the data

shared by [14], consisting of 4 video feeds and a syn-
chronous lidar feed from a Velodyne scanning laser range
finder. The video data is captured at a resolution of [240 ×
376] and a frame rate of approximately 10 fps. Higher reso-
lution video data is available but was unused. Two of the
cameras (cams 2 and 3) point to the left and right, rela-
tive to the vehicle, while cams 1 and 4 view straight ahead.
Camera 4 has a significantly narrower field of view than the
other cameras. The lidar data is collected from 64 lasers at
different pitches relative to the vehicle. The collection unit
rotates around the axis perpendicular to the ground plane,
sweeping out a freshXY Z point cloud also at about 10 fps,
though the data are updated asynchronously. Example data
are illustrated in Fig. 2. While a scanning lidar was used
in this system, a pushbroom lidar could also be used if the
environment is static.

The autocalibration system was designed as a step by
step process, refining successive estimates of the camera
parameters. Camera parameters are calibrated to the lidar
coordinate frame and are assumed to not change over the
course of the data acquisition, which can be as short as 100
frames. Cameras are calibrated individually and no infor-
mation is shared between them. The details of each subsys-

tem are described below, but in brief, the camera spherical
distortion is estimated first, using the detection of long con-
tours. Next, the motion signal from the IMU is scanned
for relatively linear sequences. These sequences are used to
determine an epipole in the image frame corresponding to
a direction of motion. Assuming for the moment that the
camera and lidar are co-located, this association limits the
camera’s parameters to just two, rotation around the pinned
direction and scaling via the focal length. An optimization
procedure, described in Sec. 6, then estimates these two pa-
rameters by minimizing the reprojection and reconstruction
error of tracked image points. The final stage is to refine the
previous estimates and determine the camera offset in the
lidar coordinate frame. This is accomplished by associating
depth discontinuities with image contours and solving for
the camera projection matrix satisfying these associations.

3. Notation
In this section the basic notations, coordinate frames, and

sensor models are introduced. Projective geometry and ho-
mogenous coordinate systems are used.

The lidar sensor produces a set of 3D points X in the li-
dar coordinate frame, represented by homogenous 4 vectors
X = [X,Y, Z, 1]T. These points translate into points in the
world coordinate frame via the euclidean [4 × 4] transfor-
mation matrix Tt, provided from the IMU at time t

The cameras are modeled as perspective projection cam-
eras, and operate on points X via a [3 × 4] matrix P to
generate image points x = [x, y, 1]T in the image plane.

x = PX (1)

P may be factored into an upper triangular projection ma-
trix K, a rotation matrix R, and the camera’s position in the
lidar frame C̃ as.

K =

 f x0

f y0
1

 (2)

P = KR[I| − C̃] (3)

Where f is the focal length of the camera in image units,
x0 and y0 are the principal point of the camera on the im-
age plane, and I is the [3 × 3] identity matrix. Note that
this model assumes square pixels with no skew. The fur-
ther assumption will be made that the principal point is in
the center of the image. This limits the camera model to
7 free parameters; 3 for rotation, 3 for position, and 1 for
focal length in pixel units. Additionally, the camera radial
distortion will be estimated, as described in the next section.
Note that normalized image coordinates will be used, where
{0, 0} is the image center and {1, 1} would be the top right
corner, were the image square.
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Figure 2. Data snapshot. Top: LIDAR range data. Color indicates depth with closer points in blue. Missing values were set to 0 for the
illustration. From the left, the range image begins to the left of the vehicle, in the direction of cam2. It is easy to make out the pillars to the
left and right of the gate in front of the vehicle and the two cars across the street. Bottom: Snapshots from the four video feeds. Note the
narrower field of view in cam4. All optical imagery is [240× 376].

4. Estimating Radial Distortion
Correcting the lens distortion is critical to building an ac-

curate camera model. Without a good estimate of this dis-
tortion it is impossible to use linear techniques to solve for
the internal camera parameters and even the optimal projec-
tion matrix will be a poor estimate of the camera’s imaging
function. In [7], Fitzgibbon illustrates the significant risk of
systemic failure from poor distortion compensation.

A radial distortion models the lens distortion as a mono-
tonic function u′ ↔ L(u, c) which moves image points u
nearer to or farther from some center of distortion c in the
image plane. Many methods have been devised to estimate
the distortion {L, c}, including [7, 20, 12] among others.
The method described in [18] is a good match to this project
since it does not require any manual interaction or the in-
troduction of a calibration object. This algorithm uses the
property that straight lines will remain straight when im-
aged by a pinhole camera, but depends on the constraint
that most long contours detected in the imagery are gener-
ated by straight lines. This constraint is often satisfied for
cameras on ground vehicles in man-made environments.

Estimation begins by extracting image contours which
are likely to be the images of straight real-world objects.
Canny edge detection is employed, followed by the removal
of contours which are too short or have strong estimated
curvature. Points are estimated with sub-pixel precision
along each image contour by fitting a 4th degree polyno-
mial to each. The inverse distortion is applied, and each
resulting undistorted contour is measured for straightness
by calculating the residual error of a linear approximation.
The total error EL is estimated as the sum of the residuals
weighted by the contour lengths.

In the formulation used in these experiments, L is pa-
rameterized as as its 4th degree Taylor polynomial with the
constraints that L(0) = 0 and L(1) = 1. This means

that the undistorted image remains approximately the same
size as the original, and c is assumed to be the image cen-
ter. Optimization proceeds by minimizing EL via sequen-
tial quadratic programming as implemented in MATLAB’s
optimization toolbox.

Fig. 3 illustrates an example undistortion from cam1.
Note the telephone pole and the building edge are no longer
bent inwards. Fig. 4 plots three separate estimates of L for
each camera. Differences are accentuated by plotting the
difference between L(r) and r. Each estimate was com-
puted from different, nonoverlapping sections of the data. It
is easy to see that the radial distortion is estimated robustly,
and, as expected, the wide-angle cameras have much larger
distortions from linearity than does the longer focus camera.

5. Limiting R via Epipolar Geometry
In order to begin to estimate the camera projection ma-

trix P, we make use of a simple association between the
motion direction and the image epipoles. It is well known
that given two projective cameras, P and P′, the image
epipoles, e and e′, are the points corresponding to the pro-
jections the camera centers. Furthermore, if R = R′ and
K = K′, i.e., a purely translational motion of a constant
camera, then the epipoles are co-located (e = e′) and they
correspond to the direction of movement.

If some point X projects to x in camera P, then x′ =
P′X is constrained by the geometry to project to some point
on the epipolar line connecting e and x. This leads to a sim-
ple method of recovering the epipole by determining the
point of intersection of all lines connecting corresponding
points in the two images. Of course, due to noise and er-
rors not all lines will converge to a single point, but one
may find a suitable approximation via a least squares fit.
Fig. 5 illustrates a set of tracked Harris corners. The es-
timated epipole is just off the left edge of the image. We



Figure 3. Distorted and automatically undistorted image pair.
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Figure 4. The distortion function L was estimated three times
for each camera using non-overlapping sequences of 7.5 seconds
each. Measurements are in pixels. The x axis plots r, the distance
from the distortion (image) center. The y axis plots the difference
between the undistorted radius and image radius (r −L(r)). Dis-
tortion estimates are stable to within a few pixels.

build an accurate estimate of the epipole by tracking points
for a short sequence of frames while the vehicle undergoes
nearly translational motion. e1

e2
1

 ∝
 f

f
1

R
 xL

yL

zL

 (4)

Figure 5. Image features are tracked to associate the image epipole
with the translational motion direction. This association limits the
space of rotation matrices.

Associating the image point e with the motion direction
D = [xL, yL, zL, 0]T limits the space of rotations to a two
parameter family controlled by f and a free rotation around
the axis D. Eq. 4 encapsulates the situation as a set of 3
equations with 4 unknowns (3 rotation parameters plus f ),
but only 2 of the equations are linearly independent. The
camera position C̃ drops out of the equation. Determining
R and f (and hence K) is the subject of the next section.

6. Focal Length from Reconstruction and Re-
projection

The next step in the calibration process to to find close
approximations to the K and R matrices. This is ac-
complished using a technique similar to bundle adjustment
[10, 6]. Image features are tracked from frame to frame,
building a library of tracked points. If xi

j is the projection
of the j-th point at time i, then the goal is to estimate the
3D points Xj and camera matrices Pi minimizing the eu-
clidean reprojection error E1 over visible points.

E1 =
∑
(i,j)

(b(i, j)× ‖(PiXj − xi
j)‖L2) (5)

where b(i, j) is a binary indicator variable which is one if
and only if point j was detected in image i. Many variants
of bundle adjustment exist, as well as tools to solve them
accurately and with minimal computational cost.

In our problem we have the additional constraint that
the projection matrices must meet the condition of Eq. 4.
For now, the unknown camera positions C̃ are set to be co-
located with the lidar positions in world coordinates, using
the transforms from the IMU. Similarly, the camera matri-
ces are modified by the IMU rotation in world coordinates.
If Ti is the euclidean IMU transform corresponding to Pi,
then:

Ti =
[

RIMU C̃IMU

0 1

]
(6)
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Figure 6. TOP. Illustration of the reprojection error E1 for two
cameras as a function of the camera focal length f and the cam-
era rotation around the motion direction D. BOTTOM. Illustra-
tion of the reconstruction error E2. The reprojection error E1 is
smooth, and usually contains a minimum near to a good camera
estimate. The reconstruction error E2 usually has a finer, more
accurate minimum, but is harder to find quickly due to the non-
convexities. Finding an E1 min helps in quickly finding the E2

min. Cam 4 min is at (355, 80), Cam5:(10, 50).

Pi = KRIMUR[I| − C̃IMU] (7)

The top row of Fig. 6 illustrates E1 for a two parameter
family of cameras, variant over f and rotations around the
direction D. The set of camera matrices was generated us-
ing a full sweep over the free rotation in increments of 5◦.
This mode of variation is represented by the x axis in the
plots in Fig. 6. f is varied corresponding to a camera field
of view of 15◦ to 175◦ in increments of 5◦. This mode of
variation is represented by the y axis.

The lidar data presents the opportunity of using a second,
different error measure. Rather than measuring the error
in reprojection in the image, one could measure the error
in the reconstruction in the lidar. Each reprojected image
point x̂i

j = P iXj is associated with a ray in world coordi-
nates and a distance. The direction can be used to index into
the lidar scan to obtain an expected distance measurement.
The lidar distance can be compared to the reconstruction
distance to build a lidar reconstruction error E2.

E2 =
∑
(i,j)

(b(i, j)× τ(g(‖Xj − C̃i‖L2, l
i
j), λ)) (8)

g(a, b) = max(
a

b
,
b

a
) (9)

τ(x, λ) = max(−1, 1− x

λ
) (10)

where lij represents the measured lidar distance in the direc-
tion of the reprojected point, x̂i

j . Similar to E1, b(i, j) is

Figure 7. Example alignment of Cam2 using the reprojection / re-
construction technique of Sec. 6 but before discontinuity match-
ing. The rotation and field of view are getting close, but more
refinement is necessary to make use of the fused data. For illus-
tration purposes, only the depth-discontinuous lidar locations are
shown. This technique is described in Sec. 7

an indicator variable, but now indicates whether the direc-
tion corresponding to x̂i

j is measured in lidar scan lij . The
maximum ratio operator g is used instead of the absolute
distance so that relatively small errors from distant points
do not overwhelm gross errors at near points. The tolerance
function τ is very important to include so that the optimiza-
tion algorithm is not rewarded or punished too strongly for
moving tracked points outside of the field of view of the li-
dar. The parameter λ effectively sets a penalty so that inputs
(distance ratios) less than λ are rewarded and ratios greater
than λ are punished. λ was set to 3 for all experiments be-
low.

The reprojection error E1 is usually smoother over the
two parameters, and contains only a few local minima, but
the minima are shallow and broad. E2 has a tighter and
deeper minimum at the appropriate parameter settings, but
requires a good initialization point to find it. In the experi-
ments below, the E1 measure is used to rapidly find a good
initialization point, and then the E2 measure is minimized
to determine the camera matrix. Optimization is computed
efficiently using the MATLAB optimization toolset.

The minimization of the E1 or E2 error measure gives a
solution to all of the camera parameters except for the phys-
ical offset of the camera from the lidar sensor. A typical
result is shown in Fig. 7. The alignment is close but suffers
from the lack of freedom in the position parameters. For
cameras mounted very close to the lidar, or with a very long
focal lengths, this may not be a problem. In the next section
a solution will be described which solves for the offset and
refines the previously estimated camera parameters.



7. Refinement by discontinuity association
In this section, the camera projection matrix is refined

using associations between analogous 2D and 3D contours.
Contours along major discontinuities are detected in both
modalities and the alignment of these is optimized via a
search over the local camera parameter space. The brute
force search (tweaked via hill-climbing) was selected rather
than a more elegant solution only after several attempts
to produce robust direct associations between 3D and 2D
points were deemed unsuccessful. Solving for the camera
projection matrix via discrete linear transform [13] or bun-
dle adjustment proved to be too unstable given the high er-
ror rate in the contour association. The slower, more sta-
ble search over the parameter space achieved greater im-
provement in automatically estimating the camera parame-
ters. The process and results are detailed below.

Discontinuities in the image data are detected with a
modified canny edge detection algorithm. Edge detection
takes place in the original images, and then the detections
are warped into the distortion free coordinate space. Each
edge pixel is labeled with its orientation and local curvature,
and edges which are too short or bent are removed.

The lidar scan is processed similarly. For each time t
synchronous with an image, the lidar is represented as a
range image, as in Fig. 2, and depth discontinuous contours
are detected in a way much like the process in [19]. Median
filtering is used to fill holes up to a certain size, and con-
tours are detected separately for depth discontinuities in the
4 cardinal directions, i.e., left-edges of objects are treated
separately from right-edges. Contour points are joined to-
gether using the image 8 neighbor pattern and contours with
fewer than 8 points are discarded. Care is taken such that
the nearer side of the discontinuity is recorded as the con-
tour. The output of this process is a graph of 3D points for
each time t.

To associate the points in the two modalities, 3D con-
tour points are projected into the images using the estimated
camera parameters, as shown in Fig. 7. Each projected li-
dar contour point is associated with its nearest image con-
tour point. Nearest neighbors are calculated using the L2

distance with each point represented by both its image po-
sition and the sin and cos of its orientation. The orientation
features are weighted by a value σ such that proximity in
position is weighted more heavily than proximity in orien-
tation. In our experiments σ is set to 0.2. Nearest neighbors
are calculated efficiently using KDtrees. Since not all depth
discontinuities will be visible optically, a robust heuristic is
used, taking the sum of the smallest 50% of the distances to
neighbors as the metric of projection quality.

This heuristic is optimized over a small range of the cam-
era parameter space in the vicinity of the estimate from
Sec. 6. A reasonable range of C̃ was searched over which
would leave the camera center within the volume of the ve-

Figure 8. Illustration of an association between image and lidar
discontinuities before optimization. The lidar discontinuities are
projected into the image plane and colored by their associated ori-
entation. The image discontinuities are drawn lightly over the im-
age. Minimizing the distance covered by these associations opti-
mizes the projection matrix (Sec. 7).

hicle. f was allowed to vary by 30%., and the camera rota-
tion was allowed to change by 7◦ in roll, pitch, and yaw.

The results of a complete optimization calculated for a
330 frame sequence are illustrated in Fig. 9. Common fail-
ure modes of the calibration system include scenes with
little or no depth discontinuity, such as a straight plane or
blank wall, or far too much depth discontinuity, such as
when looking through a fence or passing by dense foliage.
Optimization seems to fall into a bad local minimum when
fewer than about 5 frames are used to collect the disconti-
nuity associations.

8. System Performance
The process detailed in this work involves multiple

stages of refinement. A user may not be interested in ap-
plying later stages if the additional calibration accuracy is
not worth the additional computational cost. Cost estimates
are for non optimized MATLAB code running on a 2GHz
machine with 4GB of RAM. There is reason to believe that
these costs could be reduced significantly with optimized C
code or via parallel processing The costs of each stage are
variable depending upon the complexity of the data. Images
with many discontinuities can cost multiple times more than
others. Computation cost also increases linearly with num-
ber of frames included in the calibration process.

It is regrettable that the different model of radial distor-
tion used in the hand calibration prevents the direct param-
eter comparison with this calibration. Adopting that for-
mulation to produce numeric accuracy assessments of the
subsequent stages is the subject of further work. We refer
the reader to the Fig. 9 and the digital addendum for typical
empirical results across all 4 cameras.



Stage Cost (sec)
Epipole Motion Alignment 84

Reprojection and Reconstruction 245
Discontinuity Matching 2464

Table 1. Table of approximate computation cost for calibration
stages. Code is un-optimized MATLAB on a 2GHz machine with
4GB ram for a 330 frame sequence.

9. Conclusions

The system described herein is a proof of concept of
a fully automatic algorithm for associating optical video
feeds to lidar feeds on a moving vehicle. This technique
involves multiple stages of increasingly refined processing,
and may be suited to maintaining the calibration of feeds
on systems for which re-calibration is necessary but hand
calibration is not an option, such as robots in the field or
for associating data feeds in a live pan-tilt-zoom camera.
While the alignment is not as stable as that which has been
shown from hand calibrated techniques or techniques re-
quiring dedicated calibration objects, this work shows that
a hight level of data association is possible entirely auto-
matically. This association guarantee may be enough for
upstream processes to proceed on fused data.
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Figure 9. Illustration of the results of camera refinement via matching contours. Results are significantly improved over those from Sec. 6.
Note that no manual intervention is involved in either method. Note in particular the accuracy of the telephone poles and building edges.
Videos are available in the digital addendum.


