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Abstract. In this study, a discriminative detector for object context is designed and tested. The context-feature is
simple to implement, feed-forward, and effective across multiple object types in a street-scenes environment.

Using context alone, we demonstrate robust detection of locations likely to contain bicycles, cars, and pedes-
trians. Furthermore, experiments are conducted so as to address several open questions regarding visual context.
Specifically, it is demonstrated that context may be determined from low level visual features (simple color and
texture descriptors) sampled over a wide receptive field. At least for the framework tested, high level semantic
knowledge, e.g, the nature of the surrounding objects, is superfluous. Finally, it is shown that when the target object
is unambiguously visible, context is only marginally useful.
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1. Introduction and Related Work

In object detection, the goal is to locate and iden-
tify all instances of a particular object class within
an image, i.e., finding all the cars in a snapshot of
a street. There exists a dichotomy of useful informa-
tion sources for this task: appearance and context. Ap-
pearance information includes patterns of brightness,
edge responses, color histograms, texture cues, and
other features commonly used for object detection. The
notion of contextual-features is somewhat loosely de-
fined, encapsulating at once the nature of nearby objects
(Murphy et al., 2003; Strat and Fischler, 1991; Hanson
and Riseman, 1978; Carbonetto et al., 2004), the rela-
tive position and scale of those objects (Singhal et al.,
2003; Kruppa and Schiele, 2003; Fink and Perona,
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2003; Bergboer et al., 2003; Haralick, 1983; Bileschi
and Heisele, 2003), as well as statistics of low level
visual features of the scene as a whole (Torralba and
Sinha, 2001). A good definition of context might be
information relevant to the detection task but not di-
rectly due to the physical appearance of the object. For
example, knowledge of the location of aroad may influ-
ence the detection of cars. In general, in natural images,
objects are strongly expected to fit into a certain rela-
tionship with the scene, and context gives access to that
relationship.

Context is presumed to be an important cue for ob-
ject detection in humans, believed to reduce processing
time and to help disambiguate low quality inputs by
mitigating the effect of clutter, noise and ambiguous
inputs. Biederman et al. (1982) shows that humans de-
tecting objects that violate their standard context take
longer and make more errors. Functional MRI evidence
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of humans using contextual cues was provided by Cox
et al. (2004) and Bar et al. (2005), among others. If the
human organism has evolved structures for processing
visual context, then it is likely that context information
is a path to efficient understanding of the natural visual
world. Therefore, synthetic vision systems may also
benefit from context.

Previous context-enabled systems may be grouped
into three sets: systems which share information via
a network of object-detectors, systems which classify
the scene as a whole, and systems which employ a
graphical model over a segmentation of the image. As
an example of a system from the first set, Torralaba
et al. (2004) employ boosting and graphical networks
to learn associations between the likely co-occurrence
and relative position of objects. Fink describes a sim-
ilar system (Fink and Perona, 2003) for which detec-
tions of objects’ parts, as well as detections of other
objects in a scene, are employed in a modification of
the Viola-Jones cascaded object detection architecture
(Viola and Jones, 2001). This type of dense compo-
sition leaves no information source untapped, but the
downside of such structures is that any mutual depen-
dencies must be computed in an iterative fashion, first
updating one object then the other. Moreover, if the tar-
get object is the only labeled object in the database then
there are no sources of contextual information. Systems
which pre-segment the image and then model the rela-
tionships between neighboring segments, i.e. (Kumar
and Hebert, 2003; Carbonetto et al., 2004), suffer from
similar issues.

Mutual dependance is not a problem for systems
which use context by processing the scene as a
whole, without first detecting other objects. Murphy
et al. (2003) employs context as a scene ‘gist’,
which influences priors of object existence and global
location within that scene. The disadvantage here
is that the scene must be taken as one complete
unit and spatially localized processing can not take
place.

Some researchers believe that context only makes
sense in a generative framework, using for example ran-
dom fields or graphical models of context and focusing
on the expected spatial relationships between objects.
Even assuming that the world is best described by such
a hierarchal generative process, there is no reason to
believe that accurate and useful classifiers can not be
built using a discriminative framework. This is one of
the main results of Vapnik’s statistical learning theory
(Vapnik, 1999).

The system for context recognition described in this
work is simple to implement and feed-forward. It uses
the relative positions of other detected objects in the
scene as well as low-level cues such as global positions,
colors and textures to build a map of the contextual
support for the target object. The internals of this algo-
rithm are detailed in Section 3. For the sake of clarity
and ease of understanding we have opted to discuss the
architecture of the system in the context of our partic-
ular implementation, rather than in the general form.
The data for our experiments will be drawn from our
StreetScenes database, a database of hand-labeled im-
ages taken from the streets of Boston and the surround-
ing areas, as shown in Fig. 1.

2. Goals

The primary goal of this work is to suggest a simple
feed-forward context feature and to demonstrate its ef-
fectiveness across a variety of object types. By cou-
pling a detector for each such object’s appearance with
a detector for that same object’s context, we will sup-
port previous studies (Torralaba et al., 2004; Carbonetto
et al., 2004) which show that, for at least the objects
tested in our street-scenes database, context does aid in
detection performance, especially when the appearance
information is weak.

Furthermore, using this model, we explore some rel-
evantissues regarding context. For instance, we address
whether low-level context (derived from visual early
features like wavelet values) is as powerful as high-
level context (derived from semantic information like
the presence of other objects). Previous systems have
used one or the other, but this is the first direct compar-
ison of the two.

The implications of this research question may be far
reaching. If little or no benefit is gained by designing a
system based on high level information, then context is
nothing more than an additional classification feature,
perhaps with a larger receptive field,' and can be com-
puted in a feed forward manner. If, instead, context is
heavily dependant on high level information, then ro-
bust context-enabled object detection systems may be
limited to computation structures involving some form
of feedback.

We will also show that the utility of context informa-
tion is related to the difficulty of the detection problem.
If it is very difficult to discern the target object from
the background, perhaps due to occlusion or low
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Figure 1. Top: StreetScenes database examples. Middle: Hand labeled semantic layer for the images above. Each StreetScenes example includes
polygons and labels for 9 object categories. In these images different fill patterns denote different object labels. 5 object types are shown: cars,
buildings, trees, roads, and skies. Bottom: Output of our system detecting amorphous objects and rigid objects using the context.

resolution images, then visual context can be helpful,
but when the target object is unambiguously visible
the context is only marginally useful, suggesting that
the context information is highly redundant to the
appearance information.

Note that, regarding these investigations, we make
several assumptions. Firstly, in the experimental inves-
tigation, all tests use a database of images of street
scenes, and the utility of context is measured via
a detection task using three separate objects within
this database. We assume that the contextual relation-
ships of these objects in these types of scenes extend
different objects to other scenarios. Furthermore, all
studies are performed using the same general frame-
work for the contextual feature. The context feature
captures semantic and/or low-level visual information
sampled in a pre-determined spatial pattern. This fea-
ture is very similar in style to features which have been
successful for describing object appearances for detec-
tion algorithms, and is an obvious extension thereof. All

claims we make about context can only be supported
in so far that this feature captures well the available
context information. If there is pertinent, computable
context information which this feature does not express
to the subsequent learning machine, then the results of
these experiments do not adequately answer our stated
inquiries into the nature of context. It is hoped that this
work will serve to tie together some of the disparate
notions of context and serve as a resource to those who
are interested in perhaps adding contextual level un-
derstanding to an object detection system.

3. A Feed-Forward Context Feature

Our system eschews complex models in lieu of a
fast, simple, feed-forward classifier. We favor the
discriminative approach to the learning problem, and
as such are compelled to learn both relative and abso-
lute geometric models in such a framework. We show
that this is an easy problem when using the right type
of features.
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The construction of the context feature is best un-
derstood as a two stage process. In the first stage, the
image is processed to calculate the low level and se-
mantic information. In the second stage, the context
feature is calculated at each point by collecting sam-
ples of the previously computed features at pre-defined
relative positions.

3.1. Computing Low Level Image Features

To produce low-level features we first downsize the in-
put image to 60 x 80 pixels and compute color and tex-
ture spaces as in the Blobworld system of Carson et al.
(1998). This resolution was selected as it was large
enough to capture well the gross pattern of texture-
objects (buildings, trees, roads, etc.). Note that we do
not employ the subsequent clustering-based segmen-
tation stage of Blobworld. Blobworld returns a new
image represented with six layers of information, three
for color, and three for texture. The color space used is
the well documented CIE LAB space. LAB color is de-
signed to model color dissimilarity as seen by humans
as euclidian distance in the color space. The texture
layers capture information about the local structure of
the brightness gradient. The first texture layer is re-
ferred to as the polarity, and measures the likelihood of
the gradient to switch direction. In a sense it discrimi-
nates between boundaries of brightness and distributed
textures. The second layer is the anisotropy, which is
roughly a measure of the relative strength of the gradi-
ent in orthogonal directions. The third layer of texture
information is the texture contrast, which can be seen
as a way to measure the roughness or harshness of the
region.

In addition to the 6 color and texture features, we
also include 10 features to represent the global position.
These position features are calculated at every pixel p;
by recording the distance from p; to a set of 10 pre-
defined locations, roughly evenly distributed over the
image. This representation was chosen in order to make
it possible for a classifier, even a simple linear one, to
learn a wide variety of position priors. For instance,
were just the x and y recorded in the feature, it would
be impossible for a linear classifier to prefer points near
the center of the image over points near the borders.

3.2.  Semantic Image Features

In order to investigate the importance of high-level fea-
tures in constructing context cues, we include several

semantic image features. For our task of detecting cars,
pedestrians, and bicycles, we add four semantic layers
indicating the presence of buildings, trees, roads, and
skies. For instance, in the building feature, a pixel with
a value of 1 indicates that this pixel is over a building,
and a value of 0 indicates that it is not. Because of the
coarse labeling and ambiguous border cases, a pixel
may be given multiple labels, i.e., it may be both build-
ing and tree, or it may have a null label. The ground
truth for these four layers is available from the hand
labeled StreetScenes images. Figure 2 illustrates some
examples of these labels.

Since the ground truth semantic information is not
available in test images, four binary support vector ma-
chine (SVM) classifiers were trained to automatically
detect these categories. Their training set of 10,000
samples per category was extracted from 100 training
images. Generating the semantic features for a novel
test image involves first computing the low-level fea-
ture image, and then feeding this data into the four
SVMs. See Fig. 2 for learned semantic labeling. Mea-
sures of the performance of these four classifiers are
available in Fig. 4.

3.3.  Building the Context Feature

At this point, the original image has been converted into
an image with 20 layers of information. Each pixel p;
is labeled with 4 binary semantic features, 3 color fea-
tures, 3 texture features, and 10 global position features.
However, the context feature for p; must hold infor-
mation representing not only the immediate proximity,
but also the larger neighborhood. This information is
captured by sampling the data at 40 predetermined lo-
cations relative to p;, as shown in Fig. 3. The relative
positions are arranged in a quasi-log-polar fashion so
as to sample the local neighborhood more densely than
distant regions. This is similar to biological systems,
such as the mammalian retina, and several computer
vision systems, e.g., (Belongie et al., 2002). Specifi-
cally, data is sampled at 5 radii of 3, 5, 10, 15, and
20 pixels, and at 8 orientations. These 40 samples are
concatenated to generate an 800 dimensional context
feature vector for each pixel. Note that the 20 dimen-
sional image is smoothed first by averaging overa 5 x 5
window.

While it may seem that computing semantic-level
information from the low-level information, and then
including both is an exercise in redundancy, we should
point out that this is not the case. Reductio ad absurdum,
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Source True Semantic Label Empirical Semantic Label Learned Context
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Road Sky Road Sky Bicycle
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Figure 2. Column 1: Test images from the StreetScenes database. Column 2: True hand-labeled semantic data for the building, tree, road, and
sky class. Column 3: Automatically classified semantic data. (Locations with larger positive distance from hyperplane shown brighter). Column
4: Learned context images for the three object classes: car, pedestrian, and bicycle. Brighter regions indicate context suggests objects presence.
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Figure3. Anillustration of the 40 relative pooling locations, plotted
as blue '+ signs, relative to the red o . The thin black rectangle
represents the average size of the cars in the database, and the thick
black rectangle represents the average size of pedestrians.

this argument would support the claim that one should
only include the original pixel-level information, since
all visual features can be computed directly from these.
Since current classifiers are incapable of automatically
learning appropriate data representations, it makes
sense to include all useful representations of the input.

4. Experiments and Results
4.1. Fidelity of Semantic Information

Empirical semantic features are learned via four SVMs
trained to discriminate between positive and nega-
tive examples of the four classes: building, tree, road,
and sky. The features used to learn these classes are
the color, texture, and global position information de-
scribed in Section 3.1. By splitting the training data
and using cross validation, we obtain the ROC curves
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ROC: Four Amorphous Object Categories
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Figure 4. ROC curves for the four semantic classifiers; building,
tree, road, and sky.

illustrated in Fig. 4. These training and testing exam-
ples were drawn randomly from those pixels with ex-
actly one label from the set {building, tree, road, sky},
and negative examples of each category consisted of
the positive examples from the other three categories.
While the learned semantic classifiers are not perfect,
they are operating at a level much better than chance.
See Fig. 2 for some examples of learned semantic la-
beling.

4.2.  Performance of the Context Detector

Once the 100 images selected for the training of the
semantic classifiers are removed, 3,447 labeled images
remain in the StreetScenes database. This corpus is
split evenly into context-training and context-testing
sets. To learn a model of object context, it is necessary

Car detection ROC

Pedestrian detection ROC

to collect a database of samples of positive and neg-
ative context. One sample of positive context is taken
per labeled target object in the training database. For
instance, for each labeled car example in the training
database, one 800 dimensional sample of positive con-
text is extracted at the approximate center of the car.
Additionally, ten times as many locations of negative
context are recorded from locations at least 7 pixels
away from our target object. In this way, 3,002 car,
209 bicycle, and 1,449 pedestrian examples of positive
context are recorded.

Models of context are built by training a boosting
classifier until convergence on these corpora, and the
performance is evaluated on the testing data (which is
extracted analogously to the training data). The results
are plotted in Fig. 5. For comparison, we include results
for a similar context detection system where the SVM-
estimated semantic features have been replaced with
true hand-labeled semantic features for training and
testing. We also include results for a detector of object
appearance trained from the same object examples. A
description of the structure of this appearance detector
is available in the Appendix.

By comparing the ROC curves it can be seen that
the advantage of having true semantic information,
as opposed to the empirical semantic information, is
negligible. The appearance detector outperforms the
context detector in the low-false-positive region. To
surmise, however, from these plots that the appearance
detector is better than the context detector is wrong
for the following reason: the measure used here is a
measure for object detection, not object context de-
tection. If, for instance, the context detector responds
strongly to pedestrian context over a crosswalk, a lo-
cation likely to have pedestrians, and there are in fact
no pedestrians in the image, then by this measure the

Bicycle detection ROC

True positive rate

True positive rate

|/ [—Appearance ' . f

True High-Level Context

[—Appearance 2
b — Emperical High-Level Context I!  |—Emperical High-Level Context i j
. o | True High-Level Context o

o —

True positive rate

— Appearance
— Emperical High-Level Context
True High-Level Context

] (K]

[3] 04 [ '._ . .'.I' T
False positive rate

[E] o4 :-'. o8 ar
False positive rate

[ [1]

[F] o4 .'.-'. LT [X)]
False positive rate

Figure5. ROC curves for car, pedestrian and bicycle detection using (solid red): context with estimated semantic features, (dotted red): context

with hand labeled semantic features, and (solid blue): appearance.



context detector has performed poorly, i.e., a false pos-
itive. The proper way to measure the context perfor-
mance is to quantify how much aid is given to subse-
quent stages in the detection process. This is studied in
Section 4.4

4.3.  Relative Importance of Context Features

Previous systems employing context to aid in the object
detection task have used either low-level image statis-
tics or high-level object detections as their contextual
clues. In this experiment we wish to answer whether
the features input to our context classifier need to be of
high level, or if, instead, the low level information is
sufficient.

We train four context classifiers using the system out-
lined above in Section 3, the only difference between
the four being the subset of the context features used.
Classifier ‘A’ uses only position information and noth-
ing else, classifier ‘B’ uses only semantic information
and nothing else, classifier ‘C’ uses only color and tex-
ture information and nothing else, and finally classifier
‘D’ uses both color-texture features and semantic fea-
tures, but no position information. The ROC curves of
these classifiers are illustrated in Fig. 6 using the same
measure as Fig. 5. We see from the figure that the posi-
tion based classifier performs much better than chance,
even though position information is identical for every
test image. This performance is to be expected since
most cars and pedestrians are near the bottom half of
the image; the distribution is not uniform. The position-
only-classifier can be considered to be calculating a sort
of discriminative object prior for position. We see also
that the semantic-information based classifier performs

Car context detection ROC with limited features
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at about the same level as the position detector, even
though this detector is not privy to the position infor-
mation. We are surprised, however, to see that the low-
level-feature based detector performs better than either
of these. It was presumed that information about the rel-
ative positions of large objects within the image would
be the best cue as to the likely location of the target ob-
jects. This would be of definite interest to practitioners,
who may invest a great deal of time into complicated
contextual classifiers and may be disappointed by the
actual benefit over simpler methods.

Also of note is that the classifier which uses both
semantic features and color-texture features does only
marginally better than the classifier which uses only
color-texture features. This suggests that almost all
the relevant information available from these semantic
features is also immediately available from the color-
texture features. Results are not improved by using the
true semantic information in place of the empirical se-
mantic information.

One might notice that the system samples contextual
information from some locations which may overlap
the target object. It is possible that what is being learned
is less a model of context and something more akin to a
model of appearance. This would explain why the low
level image description appears to be more influential
than the high level information. In order to test this hy-
pothesis, an experiment is performed further illuminat-
ing the relationship between the importance of a feature
mode and its distance d from the point of interest. In
this experiment, for each d € {3, 5, 10, 15, 20}, a clas-
sifier is trained with only low-level or high-level fea-
tures from distance d. No global position is included.
Recall that the full image resolution at this stage is only
60 x 80, so these distances represent a wide receptive

Bicycle context detection ROC with imited features
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Figure 6. Different modes of contextual features have different utility to the detector. In all cases the low-level color and texture were the
strongest cues. The performance of the system when using only semantic features is approximately equal to the performance when using only

global position within the image.
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Feature utility vs. distance (Car)
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field. The results of this experiment are illustrated in
Fig. 7. Plotting the area under the ROC curve for these
classifiers illustrates that for all three objects tested, as
one takes relative locations further and further from the
target object, the semantic features become more im-
portant than the color and texture features. However,
the low-level features retain much of their discrimi-
native power even at great distances from the target
object. Paraphrased, knowing the color and texture in-
formation at a few points very distant from a point of
interest is about equally useful as knowing whether
those same distant points have skies, buildings, trees
or road, at least for the task of deciding whether the
point of interest is likely to have a car, pedestrian, or
bicycle.

The impact of these studies is pertinent to anyone im-
plementing a contextual system to aid in the detection
of objects. If early visual features can be used in place
of high-level semantic information, then tremendous
time can be saved by not labeling data and training
classifiers to detect the neighboring objects. Instead,
all the relevant information is already available with
simple image transformations and a larger receptive
field.

4.4.  Improving Object Detection with Context

In this final experiment it is demonstrated that context
can be used to improve system performance. The archi-
tecture we will use is the rejection cascade illustrated
in Fig. 8. In order to detect objects in a test image,
the context based detector is applied first. All pixels
classified as object-context with confidence greater

Context Accept Appearance

Input ;
> TH¢ > THa

Accept ;

Reject Reject

Figure 8. A data flow diagram of a rejection cascade combining
both context and appearance information. Inputs are classified as
positive only if they pass both classifiers. By tuning the confidence
thresholds T Hc and T Hy, different points are achieved in the ROC
plane.

than the confidence threshold 7 Hc are then passed
to the appearance detector for a secondary classifica-
tion. A pixel is judged to be an object detection only if
the pixel passes both detectors. The context confidence
threshold which maximizes the area under the ROC
curve of the complete system is selected empirically
using a validation set of 200 images. Figure 9 illus-
trates the effect that the 7 H¢ has on the performance
of the detector cascade for three different objects.
ROC:s of full system performance are illustrated in
Fig. 10. These curves suggest that using context as a
preliminary filter for an appearance detector may be
a valid strategy, but, at least in this case the perfor-
mance gain is marginal. The reason why the context
cue was of so little assistance in this experiment can be
understood by inspecting the distribution of the data.
In Fig. 11 we plot the car examples in the plane where
the x axis is the empirical appearance score, and the
y axis is the empirical context score. A system trained
to discriminate based on appearance alone would clas-
sify examples by setting some threshold along the ap-
pearance axis. In Fig. 11 the appearance classification
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Figure 9. Area under the ROC curve of the rejection-cascade as a
function of T H¢ . Horizontal lines indicate performance with no con-
text (T Hc = —00). The € marks the system’s parameters selected
via cross validation.

boundary is illustrated with the vertical dashed line.
The boundary for the context classifier is illustrated
similarly as the solid horizontal line. Points which are
classified positively by both systems lie in the upper-
right quadrant of the diagram. The context classifier
aids the system by rejecting negatives which are strong
in appearance but weak in context, e.g., the negative
points in the lower right quadrant. The important point
to notice is that the distribution is curved such that these
points are very rare. There are few samples, positive or
negative, which appear like the target object and are
simultaneously out of context. It is for this reason that
the context cue did not give much performance gain.
A superior appearance-based detector would achieve
better horizontal separation of the positive and neg-
ative points, further marginalizing the importance of
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context. We attempted to use several other models
of classifier combination, including training a linear
model, but results were similar. Note that if boost-
ing is used on the appearance and context together
in one feature vector the classification performance
is even worse than just using appearance information
alone, suggesting that in this scenario the appearance
information is much more relevant to the detection
problem.

Further support of this thesis can be seen from the
results published in Torralaba et al. (2004), where for
the three target objects computer mouse, keyboard, and
monitor, the context is marginally helpful for the detec-
tion of the monitor, somewhat helpful for the keyboard,
and very helpful for the detection of the mouse. Since
the mouse is physically small it is difficult to detect
without the contextual cues, but the monitor is visually
unambiguous, a conclusion not made in the original
work. For our application there is very little appear-
ance ambiguity.

5. Summary and Conclusions

The context system described in this work is simple
enough for others to use in their own work and gen-
eral enough to function across several object types.
Experimental results demonstrate effective context de-
tection for cars, pedestrians, and bicycles, and further-
more show that these context detections can be used in
a rejection cascade architecture to improve detection
accuracy. Our system’s feed-forward design makes it
possible to determine a map of object context at a reso-
lution of 60 x 80 in under 10 seconds using a standard
desktop computer.

It is commonly assumed that contextual cues can do
much to improve the accuracy of an object detection
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Figure 11. Empirical distribution of the car data in the appearance-
context plane. Positive points are black ‘4’ signs, negative points are
the pink ‘o’ signs. Selected thresholds for the context and appearance
detectors are shown as solid and dashed lines, respectively. Note
that few points are simultaneously strong in appearance but weak in
context.

system by eliminating false positives that fall out of
context. We have demonstrated that visual phenomena
which bear strong visual resemblance to the target ob-
ject while simultaneously being out of context may be
very rare, and in this case the benefit to be gained by
such a combination is marginal. Instead, we propose
that context is a useful cue for robust object detection
only when the appearance information is weak, such as
in critically low-resolution or very noisy images. In ret-
rospect, it shouldn’t be surprising that context is useful
in some situations and not useful in others.

Our investigation into the relative importance of dif-
ferent modalities of context features is the first of its
kind. Common wisdom suggests that context must be
computed at a high level by inferring likely target object
locations from the locations of other related objects in
the scene, but our experiments show that accurate con-
text can be determined from the low-level early visual
features both near and far from the location of interest.
It is hoped that other practitioners will take note and
attempt simple contextual methods before building de-
tectors for related objects.

Appendix: The Appearance Detector

The appearance detectors for the three object classes
are all constructed via linear kernel SVMs. Training

examples for these classifiers were selected from the
StreetScenes data using the same methodology as for
the context detector, as described in Section 4.2. In
brief, positive and negative samples of object appear-
ance are extracted from the training images by select-
ing appropriate locations and sizes. For each training
example, the minimum square bounding box of the ob-
ject is calculated, and widened by a factor of é on all
sides. This bounding box is cropped from the image,
converted to gray-scale, and resized to exactly 64 x 64
pixels. The resulting image is linearly filtered with 6
filters: four 3 x 3 Sobel filters at 45° intervals, one 3 x 3
Laplacian filter, and one identity filter. After taking the
absolute value of the result, the resulting 6 images are
submitted to the morphological gray-scale dilation op-
eration using the 8-neighbor model of connectivity and
a radius of 5 pixels. Finally, the images are downsam-
pled to 16 x 16 using bilinear filtering. The resulting
1, 536 dimensional data (6 x 16 x 16) is used to train
the SVM. In a windowing framework it is possible to
filter and dilate the image before the actual windowing
step, so as to save computation time.
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