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Abstract

We describe the design of a component based face detector
for gray scale images. We show that including parts of the
face into the negative training sets of the component classi-
fiers leads to improved system performance. We also intro-
duce a method of using pairwise position statistics between
component locations to more accurately locate the parts of
a face. Finally, we illustrate an application of this technol-
ogy in the creation of an accurate eye detection system.

1. Introduction

The goal of the work presented here is to build an accurate
face detection system for gray scale images. We limit our
domain to faces which are not rotated in the image plane,
and are rotated a maximum of 30 degrees left or right out
of the plane. Our system will be developed as an extension
to the component based face detection system described in
[2].

Many early face detection systems eschewed component
based architectures for a global approach. In [5], the dis-
tribution of faces is modelled with a mixture of gaussian
curves. Faces are detected comparing novel patterns to the
model distribution. A similar approach is taken in [4] and
[6, 10], where a single SVM and a set of neural networks,
respectively, are trained to build surfaces to separate faces
from non-faces. In all of these systems, the feature vector
is composed of image values sampled uniformly over the
whole face pattern.

It makes sense intuitively to use a part based approach to
face detection if one believes that small parts of the face are
less sensitive to visual changes due to differences in light-
ing or pose. Part based systems can also be less sensitive to
partial facial occlusion. Perhaps the most compelling rea-
son to continue studying part based systems is the empirical
evidence supporting their accuracy over global approaches
[2].

All component based systems must at some point select
which parts to use. Some systems, such as those described
in [3, 1], use parts which seem naturally salient to humans,
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such as the eyes, nose, and mouth. Other systems have been
designed to learn object parts automatically from the train-
ing images [13, 9, 2, 14]. The system described in [2] uses
14 features that were chosen automatically using a region
growing algorithm in combination with a statistical error
bound [11]. In [9], an interest operator was designed to col-
lect image patches from the training set, which were then
clustered to find salient object parts. Component based ob-
ject detection systems in the literature have been built with
as few as 2 or as many as 150 component parts. The system
described in this paper uses exactly the same 14 components
described in [2] for ease of direct comparison.

Once the part examples have been located within the in-
put image, and perhaps labelled with a confidence in each
detection, each component based object detection system
will use still another classifier to judge whether or not the
part detections are truly part of the target object, or they
are simply doppelgangers stemming from similar patterns
in non-object image sections. Some of these upper-level
classifiers use the geometry of the detected parts to decide
face examples from non-face examples. Others use only the
confidence measure output by the individual part classifiers.
The face detection system described in [7] uses a product of
probabilities, indexed from histograms, to calculate confi-
dence in some image patch stemming from the face class.
In [2] in each test image only the best example of each part
is used, and an SVM is utilized to decide whether the set
of positions and confidences is likely to have come from a
face. This SVM method of judging part detections, along
with a few other top level classifiers for comparison, will be
used in the system outlined in section 2.

2 Implementation Background

2.1 Global Classifiers for Vision

We use the term global image classifier to describe the op-
posite of a component-based image classifier. These ma-
chines do not search the input image for constituent object
parts as a first step toward classification. A single SVM
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trained on images of faces and non faces is an example of a
global face detector. The features input to a global classifier
do not necessarily need to be pixel values; wavelet features,
first derivatives of gray scale features, and other statistics
could also be used.

To turn a classifier into an object detector, a common
strategy is to use a windowing technique; where every im-
age patch is independently fed into the classifier [10]. When
the classifier output is larger than some threshold, the cor-
responding part of the image is labelled as being a member
of the object class. It is possible to build a corresponding
image, separate from the input image, where the value of
this new image at some position (i, j) is equal to the value
output from the classifier if the input to the classifier is the
image patch taken from the input image, starting at position
(4, 4); refer to figure 1 for an illustration. This new image,
which we will refer to as a result image will be precisely the
size of the original input image, less the size of the classi-
fier, and brighter where the classifier returned large values.
Figure 2 illustrates the result image created when a classi-
fier tuned to respond strongly to the bridge of the nose is
run over both a face image and a non-face image. Note the
strong response over the bridge of the nose.

Figure 1: A 10 x 10 input image when fed into an 8 x 5
classifier yields a 3 x 6 result image. The window corre-
sponding to result image position (2, 2) is illuminated to
illustrate the correspondence.

2.2 Simplified Component-based Classifier

Illustrated in figure 3 in block diagram format is a schematic
depicting a simple part based face detection system. In this
abstraction, which is similar to the more complicated sys-
tem described in section 3, a result image is created for each
component. They are then used as the input to some higher
classifier which will detect faces based on the part results.
For each sub-window of the original image, the  and y
position of maximization in each result image is recorded
(relative to the top of the sub-window), along with the val-
ues at that position. This process yields a set of triplets of
the form ((.’IT(], Yo, vO)a (ml » Y1, Ul)a ) (wn,1 yYn—1, Unfl))
where n is the number of facial components used by the sys-

Figure 2: An 18 x 16 global classifier trained on images of
the bridge of the nose is run over two input images, one of
a face and one of a non-face.

tem. This ordered set of triplets will be referred to as a con-
stellation and can be thought of as the set of points within
the sub-window where the face parts fit best. This constel-
lation is then input to the higher level classifier, which de-
cides between constellations stemming from faces and con-
stellations from non-faces. The output of this upper-level
classifier is recorded in the final result image. The top level
classifier can be of any number of types (SVMs and Baysian
approaches are commonly used) and is constrained only in
that it must be a function mapping valid constellations to
real values.

Positions and Values
of Maximization

Constellation
Classifier Results

Component Classifiers

Figure 3: A schematic for a component based classifier.

3 Detailed Implementation

Figure 4 shows a detailed block structure diagram of our
face detection system. Each sub-section will be described
separately in order of data processing. The biasing, or
model step between the creation of the component result im-
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ages and the construction of the constellations is optional,
and will be described at the end of this section .

Positions
and Values
of Maximzation

Results’
onstellation
Classifier

Biasing Step
New Result

Component Result
Classifiers Images Images

Figure 4: A block diagram schematic of the major compo-
nents of our face detection system.

3.1 Component Classifiers

Our face detector uses the 14 parts illustrated in figure 5. All
of the parts, when situated over a frontal face, lie completely
within the frame of the face and include no hairline, jawline,
or ear structure. These parts were chosen in particular to
match the component classifiers used in [2], which were in
turn selected automatically using a statistical error bound.

Figure 5: The 14 components used in our component based
face detection system arranged in a geometrically salient
and vaguely disturbing pattern.

3.2 Training Data

The training data, which was used to train the component
classifiers as well as the top-level classifier, is a set of im-
ages divided into positive and negative examples of faces.
The negative training data consists of 13,654 gray scale im-
ages. Each of these images is a 58 x 58 crop from a larger
set of images known not to contain any faces. Many, but not
all of these images are difficult examples of non faces, se-
lected by using a simple face detector to bootstrap examples
out of larger images.

The positive training data consists of 1,323 100 x 100
images of textured 3-D head models provided through the
work in [12]. A few of these are illustrated in figure 6. The

images are of 21 different heads viewed at 7 angles of rota-
tion between head-on and 30 degrees to the right. At each
position each head is viewed with 9 different illuminations.
In the images of the 3-D model, the facial part of interest is
about 58 pixels square.

Figure 6: Five examples from the positive training set.

In order to create the component training set, it was nec-
essary to crop all 14 target parts out of each training im-
age. This process was made much easier with the corre-
spondence between images available from the artificial head
data. Along with the images of the heads are included the
pixel positions of 25 sentinel points on the head. Figure 7
illustrates the positions of some of these points on a typical
head model. Each of our components is defined as a sentinel
point and extensions up, down, left and right. For instance
that the first classifier is an 18 by 16 rectangle around a point
centered at the bridge of the nose. Figure 8 shows a few
examples of extracted training data for this classifier. When
we extract the components we also extract components from
the left-right mirror images of the training data. This corpus
of 2,646 images for every component comprises the positive
training data of the component classifiers.

Figure 7: The 58 x 58 region around the face in three train-
ing images, with the 14 utilized sentinel points highlighted.

Figure 8: Selected examples of the positive training set for
component 0, the bridge of the nose component

Two different negative component training sets were
built; the first one was built from the negative examples of
faces. For each component classifier, a random rectangle,
the size determined by the classifier, was extracted from
each of the 13,654 negative training images. This will be
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referred to as the non-facial negative training set, examples
of which can be seen in figure 9.

o

Figure 9: Selected examples of the non-face negative train-
ing set for component 0, the bridge of the nose component.

The second negative training set was created using ex-
tractions from the positive face data. Care was taken so that
the extractions did not overlap the canonical positions by
more than 50% of the area of the classifier. From each of the
1,323 training images 4 such rectangles were cropped out,
and 4 again from the mirror image. This body of 10,584 im-
ages per classifier will be referred to as the facial negative
training set, examples of which are shown in figure 10.

4Rk

Figure 10: Selected examples of the facial negative training
set for component 0, the bridge of the nose component

For our feature space we use the gray scale values of the
pixels in each training image. Gray scale pixel values have
been shown to be a good feature space for frontal face detec-
tion in comparison to derivative or wavelet type features [1].
Two separate arrays of component classifiers were trained,
one using the non-facial negatives, and the other using the
facial negatives.

3.3 Judgement of Constellations

Once the constellation has been calculated for every 58 X
58 window in the input image, a higher level classifier is
employed to judge the constellations.

Our first constellation judging algorithm uses histogram
based classifiers. In this approach, we collected data
from the artificial head models to produce a model of
P(zy,yn|n) for each component n. Figure 11 illustrates
this position histogram for the bridge of the nose classifier,
the left cheek classifier, and the mouth classifier. If we as-
sume that the position of facial components are independent
random variables, we can calculate the probability of a con-
stellation stemming from a face by simply multiplying all
the probabilities indexed from the histograms.

Figure 11: Position histograms for the bridge of the nose,
left cheek, and mouth components. Darker pixels indicate
areas of likely location for these components

3.4 Biasing Step

One common error of the system outlined in [2] is that the
classifiers don’t always maximize at the correct location.
Using only the position of the maximum stimulation per
component unfortunately ignores any local maximum over
the correct position of the component.

Using classifiers that have maximized in the correct posi-
tion, we can guess more likely positions for classifiers that
were wrong using geometric clues. Since we don’t know
which classifiers were correct a priori, we propose the fol-
lowing algorithm to improve the accuracy of the constella-
tions.

Once the constellation has been determined, for every
classifier 4, and for every other classifier j # i, we multiply
every position in the result image of j by a value representa-
tive of how likely j is to maximize at that location, given the
location of ¢. These representative values are drawn from
a histogram of pairwise position statistics (see figure 12),
modulated by a strength parameter. Paraphrased, given the
position of classifier ¢, we change the result of classifier j
to more closely model the expected position of classifier
7. This is illustrated in figure 14.The strength parameter is
implemented by linearly normalizing the values in the pair-
wise position images to [(c) =, 1], where n is the number
of component classifiers, and alpha is in [0, 1]. This way,
the most any value in any result image can be reduced is by
a factor of a, which happens only if the (n — 1) other clas-
sifiers had a value of O in their pairwise position histogram
at this particular point.

Figure 12: Pairwise position images indicate the expected
position of the right eye, the left eye, and the mouth in com-
parison to the position of the bridge of the nose (x).
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The biasing step only works by assuming that some sub-
set of the component classifiers maximized in the correct
positions, and the constructive interference from their bias-
ing will serve to correct the errant components. Unfortu-
nately, since the individual classifiers are weak, the global Original Result Images, Pairwise Position
maximum of some classifier i is very often not at the correct except bridge of nose. Histograms
position. Indeed, for images that are not much like our train-
ing images, it is often the 3" or 4t" ranked local maximum ®
that is at the correct position. As a generalization of the bi-
asing step outlined above, consider biasing from more than
one local maximum per component. In brief, we record the
N strongest local maxima whose corresponding windows
of support in the original window do not overlap at all. We
then bias as before from each of these points and refer to
the technique as [N-level biasing.

®

Convolve
With
Histogram

max

@

Qutput Bias Image j

New Result image
For Bridge of Nose

i

Original Result image
For Bridge of Nose

Figure 13: Top: Result images for the bridge of the nose,
the nose, and the right eye. Botfom: The same result images
after biasing.

B B
4

Figure 14: Illustration of the biasing step for the bridge of
the nose component.

4 Results

The positive test data were drawn from the CMU PIE
database available at [8]. In order to save time computa-
tionally, the heads were cropped out by hand before testing.
After removing from the data all heads at rotations out of
the plane more than 30 degrees, we were left with a positive
test set of 1,834 images, examples of which are illustrated
in figure 15.

The negative test data were extracted from a set of non ‘
face images, different from the set used to generate the non-
face training data. In order to make the test set difficult, we
selected bootstrapped examples using a simple face clas-

sifier!. In total, 8,848 images comprised the negative test ) . .
set. For each image in the test data, we recorded only the Figure 15: 5 example images from our positive t.GSt §et, eX-
strongest response over all scales and positions, and used tracted from the CMU PIE database. The full size images

this to build an ROC curve. are all between 200 and 300 pixels wide and roughly square

9
?
v

The ROC curve in figure 16 is the curve gleaned from
running our system using the component classifiers trained

IThis classifier was different from the one used to generate the boot-
strapped training data.
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with facial-negative training set. The images were tested
for faces at every scale from 60 x 60 to 110 x 110 in 11
geometric increments. Biasing was performed using 5 local
maxima per component. The dashed line below, for com-
parison, is the result from a linear SVM trained on the full
58 x b8 facial extractions.

3 04 05 06 07 06 08

Figure 16: ROC curve illustrating comparative performance
between a 58 x 58 linear kernel SVM (dashed line) and the
full 14 component system with 5 level biasing (solid line).

In figure 17 we again see the same solid curve. The
dashed line is now the exact same system as above, with
the component classifiers replaced with component classi-
fiers trained on non-facial negatives. The two systems are
about on par in this performance measure.

01 02 03 o0& 05 08 07 08 08 1 0 o0

o 0 om

05 06 007 0%

Figure 17: Left: ROC curve illustrating comparative per-
formance between the 14 component system using facial
negatives in the training set (solid line) and using non-facial
negatives in the training set (dashed line). Right: Rescaled
view of the graph on the left

In figure 18 are ROC curves for three systems which dif-
fer only in the biasing step. The solid curve near the bottom
is from a system which is using no biasing at all. Perfor-
mance is increased greatly by using a 5-level biasing rou-
tine on the result images. The system which generated the
dotted curve uses first a 5-level biasing step and second a 1-
level biasing step before the constellations are created. The
reduction in performance is perhaps due to forcing the nega-
tive examples into constellations which look like they came
from faces.
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Figure 18: Left: ROC curve illustrating comparative per-
formance between three systems which differ only in the
biasing step. These systems all included the facial-negative
component classifiers, and the histogram based constella-
tion classifier. 5 level biasing dashed line, 5 level biasing
followed by 1 level biasing dotted line, and no biasing solid
line were all tested. Right: Zoomed in view.

S Application: Eye Detection

As an illustration of the classifier training and biasing tech-
niques described above, it was decided to apply the tech-
nology to the domain of eye detection. The goal was to
construct an algorithm such that when input an image of a
face the system would pinpoint the location of the center of
the eyes.

5.1 Architecture

The eye-detection system works identically to the face de-
tection system. Two of the 14 components are centered over
the eyes. By simply outputting the positions of these com-
ponents we are able to locate the eyes.

In order to bench-mark the system, it was necessary to
construct another, more simple eye detection scheme to
compare against. Two such benchmarking systems were
built. The first system ran two classifiers, one for the left
and right eye. It then extracted a list of the ten best lo-
cal maxima across the scale space. These lists were then
checked pairwise for good matches using the pairwise po-
sition statistics drawn from our artificial training data. The
best pair was chosen based on how it fit the geometric con-
straint, and the strength of the detection in the eye classifier.

The second benchmark system started by searching the
image for the position of the face. This was done by search-
ing the image with a 19 x 19 polynomial face classifier
trained on real images of frontal faces, as described in [1].
Once the best example of the face was found, a window
around the expected position of the eyes was searched for
the best example of the eyes. This pair of positions was
reported by the system as the correct position of the eyes.
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5.2 Performance

It was decided to use a subset of the labelled CMU PIE
database [8], removing all heads turned more than 30 de-
grees out of the plane, leaving a total of 476 images. Af-
ter correcting a very small number of mislabelled images,
we benchmarked the system by recording the difference be-
tween the output and the human-defined ground truth.

In figure 19 are listed the mean Euclidean distances from
the ground truth position. We see that the 14 component
classifier is on average twice as close to the expected posi-
tion of the eye as the classifier which searches first for the
face. Both of these classifiers outperform the system which
only searches for the eyes and chooses examples based on
the geometrical constraint.

\ | Left [ Right |
Convolution and Constraint System 57.8 | 70.0
19 x 19 Face Detecting System 27.0 | 27.6
14 Component System with 5 Level Biasing | 11.6 | 16.9

Figure 19: Table of the mean Euclidean distance from the
ground truth position.

Although it might seem obvious, it is worth mention-
ing that the eye finder architecture is made more robust by
searching for objects we normally find near the eye. As we
add or remove component classifiers for the nose, mouth,
etc. we can strike a balance between the desired accuracy
and the required speed of the system.

6 Conclusions

While working with the component based face detection
system in [2] we found that often component classifiers
would maximize in the incorrect locations. By training
component classifiers using negative examples drawn from
the rest of the face, we were able to lessen the occurrence
of such mistakes, and thereby make the system more ro-
bust. It is noteworthy that we built a face detector trained
only on face images which outperforms a comparable sys-
tem trained with non-face data.

Often when finding the best examples of the components
in an image of a face, several of the components would clas-
sify in the correct positions while others would maximize
elsewhere. This led to the idea of pairwise biasing, where
classifiers would report their position to each other in order
to find a set of positions which more closely match the geo-
metrical relationships we expect from a face. It was shown
that using the pairwise position statistics to bias the result
images before calculating the constellations led to much im-
proved face detection.

Finally we outlined the implementation of a robust eye
detection scheme which used all 14 component classifiers
in an attempt to both locate the face in an image, and pin-
point the center of the eyes. It was shown that by using
the remainder of the face in a component based manner we
were able to more accurately locate the center of the eye.
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